ACD can configure probes for the various manual and automated assays for KRAS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
EMBO Mol Med
2016 Dec 28
Rath N, Morton JP, Julian L, Helbig L, Kadir S, McGhee EJ, Anderson KI, Kalna G, Mullin M, Pinho AV, Rooman I, Samuel MS, Olson MF.
PMID: 28031255 | DOI: 10.15252/emmm.201606743
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a KrasG12D/p53R172Hmouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three-dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK-induced genes that facilitate extracellular matrix remodeling, with greatest fold-changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13 MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three-dimensional contexts. Treatment of KrasG12D/p53R172H PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor-associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth.
J Vis Exp.
2018 Aug 14
Anderson CM, Laeremans A, Wang Xm, Wu X, Zhang B, Doolittle E, Kim J, Li N, Pimentel HXY, Park P, Ma XJ.
PMID: 30176002 | DOI: 10.3791/58097
Because precision medicine is highly dependent on the accurate detection of biomarkers, there is an increasing need for standardized and robust technologies that measure RNA biomarkers in situ in clinical specimens. While grind-and-bind assays like RNAseq and quantitative RT-PCR enable highly sensitive gene expression measurements, they also require RNA extraction and thus prevent valuable expression analysis within the morphological tissue context. The in situ hybridization (ISH) assay described here can detect RNA target sequences as short as 50 nucleotides at single-nucleotide resolution and at the single-cell level. This assay is complementary to the previously developed commercial assay and enables sensitive and specific in situ detection of splice variants, short targets, and point mutations within the tissue. In this protocol, probes were designed to target unique exon junctions for two clinically important splice variants, EGFRvIII and METΔ14. The detection of short target sequences was demonstrated by the specific detection of CDR3 sequences of T-cell receptors α and β in the Jurkat T-cell line. Also shown is the utility of this ISH assay for the distinction of RNA target sequences at single-nucleotide resolution (point mutations) through the visualization of EGFR L858R and KRAS G12A single-nucleotide variations in cell lines using automated staining platforms. In summary, the protocol shows a specialized RNA ISH assay that enables the detection of splice variants, short sequences, and mutations in situ for manual performance and on automated stainers.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com