ACD can configure probes for the various manual and automated assays for KRAS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Oncotarget.
2016 Apr 20
Deevi RK, McClements J, McCloskey KD, Fatehullah A, Tkocz D, Javadi A, Higginson R, Marsh Durban V, Jansen M, Clarke A, Loughrey MB, Campbell FC.
PMID: 27119498 | DOI: 10.18632/oncotarget.8863
Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3,theactive form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted "Swiss cheese-like" cribriform morphology (CM) comprising multiple abnormal "back to back" lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.
Histopathology
2019 Mar 27
Hashimoto T, Ogawa R, Yoshida H, Taniguchi H, Kojima M, Saito Y, Sekine S.
PMID: 30916365 | DOI: 10.1111/his.13867
Abstract
AIMS:
Traditional serrated adenoma (TSA) is an uncommon type of colorectal serrated polyp. RSPO fusions, which potentiate WNT signaling, are common and characteristic genetic alterations in TSA. The aim of this study was to further characterize the prevalence and variation of RSPO fusions in TSA.
METHODS AND RESULTS:
Quantitative PCR analysis of 99 TSAs revealed overexpression of RSPO2 and RSPO3 in 6 and 29 lesions, respectively. Reverse-transcription PCR identified previously reported PTPRK-RSPO3 fusion transcripts in all the 29 TSAs with RSPO3 overexpression, confirming that PTPRK-RSPO3 is the predominant RSPO fusions in TSAs. Among the six lesions with RSPO2 overexpression, two overexpressed full-length RSPO2. An EIF3E-RSPO2 fusion, which is a known recurrent RSPO fusion in colorectal cancer, was detected in three lesions. In addition, rapid amplification of cDNA ends identified a novel PIEZO1-RSPO2 fusion in one TSA. All the four TSAs with RSPO2 fusions concurrently had KRAS mutations and showed the classical histological features.
CONCLUSIONS:
The present study identified EIF3E-RSPO2 and PIEZO1-RSPO2 fusions in TSAs. Our observations expand the spectrum of RSPO fusions in TSAs and suggest that TSAs are precursors of colorectal cancers with these RSPO2 fusions.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com