ACD can configure probes for the various manual and automated assays for KRAS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cancer science
2021 May 01
Yachida, N;Yoshihara, K;Suda, K;Nakaoka, H;Ueda, H;Sugino, K;Yamaguchi, M;Mori, Y;Yamawaki, K;Tamura, R;Ishiguro, T;Kase, H;Motoyama, T;Enomoto, T;
PMID: 33675098 | DOI: 10.1111/cas.14871
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
2022 Jul 06
Nelson, ND;Xu, F;Chandrasekaran, P;Litzky, LA;Peranteau, WH;Frank, DB;Li, M;Pogoriler, J;
PMID: 35794233 | DOI: 10.1038/s41379-022-01129-0
J Pathol. 2018 Dec 13.
2018 Dec 13
Baumhoer D, Kovac M, Sperveslage J, Ameline B, Strobl AC, Krause A, Trautmann M, Wardelmann E, Nathrath M, Höller S, Hardes J, Gosheger G, Krieg AH, Vieth V, Tirabosco R, Amary F, Flanagan AM, Hartmann W.
PMID: 30549028 | DOI: 10.1002/path.5216
Non-ossifying fibroma, which occasionally results in pathologic fracture, is considered the most common benign and self-limiting lesion of the growing skeleton. By DNA sequencing we have identified hotspot KRAS, FGFR1 and NF1 mutations in 48 of 59 patients (81.4%) with NOF, at allele frequencies ranging from 0.04 to 0.61. Our findings define NOF as a genetically driven neoplasm caused in most cases by activated MAP-kinase signalling. Interestingly, this driving force either diminishes over time or at least is not sufficient to prevent autonomous regression and resolution. Beyond its contribution to a better understanding of the molecular pathogenesis of non-ossifying fibroma, this study adds another benign lesion to the spectrum of KRAS- and MAP-kinase signalling-driven tumours.
Molecular cell
2022 Feb 09
Barutcu, AR;Wu, M;Braunschweig, U;Dyakov, BJA;Luo, Z;Turner, KM;Durbic, T;Lin, ZY;Weatheritt, RJ;Maass, PG;Gingras, AC;Blencowe, BJ;
PMID: 35182477 | DOI: 10.1016/j.molcel.2021.12.010
Am J Surg Pathol.
2018 Aug 31
Hashimoto T, Ogawa R, Yoshida H, Taniguchi H, Kojima M, Saito Y, Sekine S.
PMID: 30179900 | DOI: 10.1097/PAS.0000000000001149
Colorectal traditional serrated adenomas (TSAs) are often associated with precursor polyps, including hyperplastic polyps and sessile serrated adenoma/polyps. To elucidate the molecular mechanisms involved in the progression from precursor polyps to TSAs, the present study analyzed 15 precursor polyp-associated TSAs harboring WNT pathway gene mutations. Laser microdissection-based sequencing analysis showed that BRAF or KRAS mutations were shared between TSA and precursor polyps in all lesions. In contrast, the statuses of WNT pathway gene mutations were different between the 2 components. In 8 lesions, RNF43, APC, or CTNNB1 mutations, were exclusively present in TSA. RNF43 mutations were shared between the TSA and precursor components in 3 lesions; however, they were heterozygous in the precursor polyps whereas homozygous in the TSA. In 4 lesions with PTPRK-RSPO3 fusions, RNA in situ hybridization demonstrated that overexpression of RSPO3, reflecting PTPRK-RSPO3 fusion transcripts, was restricted to TSA components. Consistent with the results of the genetic and in situ hybridization analyses, nuclear β-catenin accumulation and MYC overexpression were restricted to the TSA component in 13 and 12 lesions, respectively. These findings indicate that the WNT pathway gene alterations are acquired during the progression from the precursor polyps to TSAs and that the activation of the WNT pathway plays a critical role in the development of TSA rather than their progression to high-grade lesions.
Nature communications
2022 May 13
Liu, Y;Deguchi, Y;Wei, D;Liu, F;Moussalli, MJ;Deguchi, E;Li, D;Wang, H;Valentin, LA;Colby, JK;Wang, J;Zheng, X;Ying, H;Gagea, M;Ji, B;Shi, J;Yao, JC;Zuo, X;Shureiqi, I;
PMID: 35562376 | DOI: 10.1038/s41467-022-30392-7
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com