Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for KIT

ACD can configure probes for the various manual and automated assays for KIT for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

ACD’s data images for KIT gene.

  • Expression of KIT in Human Breast cancer sample using RNAscope™ 2.0 HD Assay Brown

  • Probes for KIT (48998)
  • Kits & Accessories (75)
  • Support & Documents (0)
  • Publications (76)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (14) Apply TBD filter
  • KIT (4) Apply KIT filter
  • Chat (2) Apply Chat filter
  • Slc17a6 (2) Apply Slc17a6 filter
  • GPR65 (2) Apply GPR65 filter
  • Slc17a7 (2) Apply Slc17a7 filter
  • Vip (2) Apply Vip filter
  • E7 (2) Apply E7 filter
  • CD274 (1) Apply CD274 filter
  • Piezo2 (1) Apply Piezo2 filter
  • MEIS2 (1) Apply MEIS2 filter
  • Wnt4 (1) Apply Wnt4 filter
  • ALK (1) Apply ALK filter
  • CCKAR (1) Apply CCKAR filter
  • Gad1 (1) Apply Gad1 filter
  • Gck (1) Apply Gck filter
  • egfp (1) Apply egfp filter
  • Dmp1 (1) Apply Dmp1 filter
  • COL1A1 (1) Apply COL1A1 filter
  • Mertk (1) Apply Mertk filter
  • FOXP2 (1) Apply FOXP2 filter
  • Trp53 (1) Apply Trp53 filter
  • MET (1) Apply MET filter
  • CXCL10 (1) Apply CXCL10 filter
  • Ifng (1) Apply Ifng filter
  • TSPY1 (1) Apply TSPY1 filter
  • TLR2 (1) Apply TLR2 filter
  • ETV1 (1) Apply ETV1 filter
  • Gata3 (1) Apply Gata3 filter
  • Scn11a (1) Apply Scn11a filter
  • FOS (1) Apply FOS filter
  • GCG (1) Apply GCG filter
  • GLI1 (1) Apply GLI1 filter
  • GLP1R (1) Apply GLP1R filter
  • Scn10a (1) Apply Scn10a filter
  • PVALB (1) Apply PVALB filter
  • SLC32A1 (1) Apply SLC32A1 filter
  • HES1 (1) Apply HES1 filter
  • Scn1a (1) Apply Scn1a filter
  • IGF1 (1) Apply IGF1 filter
  • IGFBP2 (1) Apply IGFBP2 filter
  • AGRP (1) Apply AGRP filter
  • Sst (1) Apply Sst filter
  • Cdh13 (1) Apply Cdh13 filter
  • GFRA1 (1) Apply GFRA1 filter
  • MYC (1) Apply MYC filter
  • LYPD1 (1) Apply LYPD1 filter
  • Spp1 (1) Apply Spp1 filter
  • MDM2 (1) Apply MDM2 filter
  • GLUL (1) Apply GLUL filter

Product

  • DNAscope HD Duplex Reagent Kit (15) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD duplex reagent kit (13) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope (6) Apply RNAscope filter
  • RNAscope Multiplex fluorescent reagent kit v2 (6) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Fluorescent Multiplex Reagent kit (5) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope 2.5 HD Reagent Kit (4) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope HiPlex12 Reagents Kit (3) Apply RNAscope HiPlex12 Reagents Kit filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • TBD (2) Apply TBD filter
  • RNA-Protein CO-Detection Ancillary Kit (1) Apply RNA-Protein CO-Detection Ancillary Kit filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 LS Reagent Kits (1) Apply RNAscope 2.5 LS Reagent Kits filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope ISH Probe High Risk HPV (1) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex Fluorescent Reagent Kit V3 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit V3 filter
  • RNAscope Multiplex Fluorescent Reagent Kit v4 (1) Apply RNAscope Multiplex Fluorescent Reagent Kit v4 filter

Research area

  • Cancer (19) Apply Cancer filter
  • Neuroscience (18) Apply Neuroscience filter
  • Inflammation (9) Apply Inflammation filter
  • Development (6) Apply Development filter
  • HIV (5) Apply HIV filter
  • Other: Methods (5) Apply Other: Methods filter
  • HPV (4) Apply HPV filter
  • Infectious (4) Apply Infectious filter
  • Stem Cells (4) Apply Stem Cells filter
  • Covid (2) Apply Covid filter
  • Stem cell (2) Apply Stem cell filter
  • Adult Polycystic Kidney Disease (1) Apply Adult Polycystic Kidney Disease filter
  • Alzheimer’s disease (1) Apply Alzheimer’s disease filter
  • Cardiology (1) Apply Cardiology filter
  • Cell Type Profiling (1) Apply Cell Type Profiling filter
  • CGT (1) Apply CGT filter
  • emotional valence (1) Apply emotional valence filter
  • Fibrosis (1) Apply Fibrosis filter
  • Heart Failure (1) Apply Heart Failure filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Infectious Disease: Epstein-Barr virus (1) Apply Infectious Disease: Epstein-Barr virus filter
  • Infertility (1) Apply Infertility filter
  • Injury (1) Apply Injury filter
  • Kidney (1) Apply Kidney filter
  • LncRNAs (1) Apply LncRNAs filter
  • Macular Degeneration (1) Apply Macular Degeneration filter
  • Neurodevelopmental disorders (1) Apply Neurodevelopmental disorders filter
  • NGS (1) Apply NGS filter
  • osteoarthritis (1) Apply osteoarthritis filter
  • Other (1) Apply Other filter
  • Other: Bone (1) Apply Other: Bone filter
  • Other: Eyes (1) Apply Other: Eyes filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Reproduction (1) Apply Other: Reproduction filter
  • Other: Veterinary Science (1) Apply Other: Veterinary Science filter
  • Pain (1) Apply Pain filter
  • Parkinson’s disease (1) Apply Parkinson’s disease filter
  • Pharmacology (1) Apply Pharmacology filter
  • Proteasome inhibitor (1) Apply Proteasome inhibitor filter
  • Protocols (1) Apply Protocols filter
  • Psychiatry (1) Apply Psychiatry filter
  • RNAi therapeutics (1) Apply RNAi therapeutics filter
  • Schizophrenia (1) Apply Schizophrenia filter
  • siRNAs (1) Apply siRNAs filter
  • Social Dysfunction (1) Apply Social Dysfunction filter

Category

  • Publications (76) Apply Publications filter
Identifying Novel Genes and Variants in Immune and Coagulation Pathways Associated with Macular Degeneration

Ophthalmology Science

2022 Aug 01

Huan, T;Cheng, S;Tian, B;Punzo, C;Lin, H;Daly, M;Seddon, J;
| DOI: 10.1016/j.xops.2022.100206

Purpose To select individuals and families with low genetic burden for age-related macular degeneration (AMD), to inform the clinical diagnosis of macular disorders, and to find novel genetic variants associated with macular disease in affected families. Design Genetic association study based on targeted and whole exome sequencing. Participants 758 subjects (481 individuals with maculopathy and 277 controls), including 316 individuals in 72 families. Methods We focused on 150 genes involved in the complement, coagulation, and inflammatory pathways. Single-variant tests were performed on 3062 variants shared among 5 or more subjects using logistic regression. Gene-based tests were used to evaluate aggregate effects from rare and low frequency variants (at minor allele frequency [MAF]
An mPOA-ARCAgRP pathway modulates cold-evoked eating behavior

Cell reports

2021 Aug 10

Yang, S;Tan, YL;Wu, X;Wang, J;Sun, J;Liu, A;Gan, L;Shen, B;Zhang, X;Fu, Y;Huang, J;
PMID: 34380037 | DOI: 10.1016/j.celrep.2021.109502

Enhanced appetite occurs as a means of behavioral thermoregulation at low temperature. Neural circuitry mediating this crosstalk between behavioral thermoregulation and energy homeostasis remains to be elucidated. We find that the hypothalamic orexigenic agouti-related neuropeptide (AgRP) neurons in the arcuate nucleus (ARC) are profoundly activated by cold exposure. The calcium signals in ARCAgRP neurons display an immediate-response pattern in response to cold stimulation. Cold-responsive neurons in the medial preoptic area (mPOA) make excitatory synapses onto ARCAgRP neurons. Inhibition of either ARCAgRP neurons or ARC-projecting mPOA neurons attenuates cold-evoked feeding, while activation of the mPOA-to-ARC projection increases food intake. These findings reveal an mPOA-ARCAgRP neural pathway that modulates cold-evoked feeding behavior.
ABCA1 activity in the RPE is unnecessary for RPE reverse cholesterol transport (RCT) and AMD pathophysiology

Investigative Ophthalmology & Visual Science

2023 Jan 01

Coble, M;Aranda, J;Demirs, JT;Esterberg, R;Hanks, S;Jose, S;Leehy, B;Liao, S;Niu, YZ;Qiu, Y;Yang, J;

METHODS : Gene expression of ABCA1 and ApoA1 on human donor tissue and iPSC-RPE were examined by qPCR (n=3). Bulk RNAseq examined transcript changes in key RCT genes on donor retinas across different stages of disease progression. RNAscope probes (ACDBio) were designed against abca1 transcripts with appropriate mismatch controls. Neutral lipid stain with oil-red O on 10um cryo-sections of abca1 KO and wild type (WT) eyes (N= 5). Two siRNAs knocked down abca1 in iPSC-RPE cells to assess abca1 contribution to cholesterol efflux (n=3). Samples were analyzed with the cholesterol efflux kit (ab196985) and compared to non-targeting control siRNAs. Histological analysis of ABCA1 protein using anti-ABCA1 (Invitrogen-MA516026) on human donor retinas (AMD1 vs AMD3).
An Atlas of Vagal Sensory Neurons and Their Molecular Specialization.

Cell Rep

2019 May 21

Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P.
PMID: 31116992 | DOI: 10.1016/j.celrep.2019.04.096

Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems.

Allogeneic immunity clears latent virus following allogeneic stem cell transplantation in SIV-infected ART-suppressed macaques

Immunity

2023 May 13

Wu, HL;Busman-Sahay, K;Weber, WC;Waytashek, CM;Boyle, CD;Bateman, KB;Reed, JS;Hwang, JM;Shriver-Munsch, C;Swanson, T;Northrup, M;Armantrout, K;Price, H;Robertson-LeVay, M;Uttke, S;Kumar, MR;Fray, EJ;Taylor-Brill, S;Bondoc, S;Agnor, R;Junell, SL;Legasse, AW;Moats, C;Bochart, RM;Sciurba, J;Bimber, BN;Sullivan, MN;Dozier, B;MacAllister, RP;Hobbs, TR;Martin, LD;Panoskaltsis-Mortari, A;Colgin, LMA;Siliciano, RF;Siliciano, JD;Estes, JD;Smedley, JV;Axthelm, MK;Meyers, G;Maziarz, RT;Burwitz, BJ;Stanton, JJ;Sacha, JB;
PMID: 37236188 | DOI: 10.1016/j.immuni.2023.04.019

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.
PD-L1 immunohistochemistry assay optimization to provide more comprehensive pathological information in classic Hodgkin lymphoma

Journal of Hematopathology

2023 Feb 01

Shi, Y;Mi, L;Lai, Y;Zhao, M;Jia, L;Du, T;Song, Y;Li, X;
| DOI: 10.1007/s12308-023-00530-1

Overexpression of PD-L1 can be a predictive marker for anti-PD-1 therapeutic efficacy in classic Hodgkin lymphoma (CHL); however, harmonization of different IHC assays remains to be accomplished, and interpretations of PD-L1 immunostaining results remain controversial in CHL. In this study, we sought to optimize the PD-L1 immunohistochemistry (IHC) assay in CHL. All tests were performed on a tumour tissue microarray established from 54 CHL cases. Three IHC antibodies (405.9A11, SP142, 22C3) for detecting PD-L1 expression were compared semi quantitatively with the RNAscope assay (No. 310035, ACD), and the difference in the expression in background immune cells (ICs) between assays and the associations of expression levels with densities of TILs/TAMs were also analysed. 405.9A11 demonstrated best specificity in HRS cells and best sensitivity in ICs. Positive expression of PD-L1 was more frequent in ICs (85.2%) than in HRS cells (48.1%). Different subgroups of background ICs, including tumour-associated macrophages (TAMs), were assessed and scored for CD4, CD8, FOXP3, and CD163 expression. PD-L1 expression on ICs was the factor most associated with the density of TAMs. 405.9A11 provided the most convincing PD-L1 expression results. Pathologists should report PD-L1 expression in a combined manner, including both the status of HRS cells and the percentage of PD-L1-positive ICs.
MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression

bioRxiv : the preprint server for biology

2023 Feb 21

Chen, J;Zheng, Q;Hicks, JL;Trabzonlu, L;Ozbek, B;Jones, T;Vaghasia, A;Larman, TC;Wang, R;Markowski, MC;Denmeade, SR;Pienta, KJ;Hruban, RH;Antonaraskis, ES;Gupta, A;Dang, CV;Yegnasubramanian, S;De Marzo, AM;
PMID: 36865273 | DOI: 10.1101/2023.02.20.529259

Increased mitochondrial function may render some cancers vulnerable to mitochondrial inhibitors. Since mitochondrial function is regulated partly by mitochondrial DNA copy number (mtDNAcn), accurate measurements of mtDNAcn could help reveal which cancers are driven by increased mitochondrial function and may be candidates for mitochondrial inhibition. However, prior studies have employed bulk macrodissections that fail to account for cell type-specific or tumor cell heterogeneity in mtDNAcn. These studies have often produced unclear results, particularly in prostate cancer. Herein, we developed a multiplex in situ method to spatially quantify cell type specific mtDNAcn. We show that mtDNAcn is increased in luminal cells of high-grade prostatic intraepithelial neoplasia (HGPIN), is increased in prostatic adenocarcinomas (PCa), and is further elevated in metastatic castration-resistant prostate cancer. Increased PCa mtDNAcn was validated by two orthogonal methods and is accompanied by increases in mtRNAs and enzymatic activity. Mechanistically, MYC inhibition in prostate cancer cells decreases mtDNA replication and expression of several mtDNA replication genes, and MYC activation in the mouse prostate leads to increased mtDNA levels in the neoplastic prostate cells. Our in situ approach also revealed elevated mtDNAcn in precancerous lesions of the pancreas and colon/rectum, demonstrating generalization across cancer types using clinical tissue samples.
Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness

Cancer cell

2022 Dec 20

Li, Y;Lih, TM;Dhanasekaran, SM;Mannan, R;Chen, L;Cieslik, M;Wu, Y;Lu, RJ;Clark, DJ;Kołodziejczak, I;Hong, R;Chen, S;Zhao, Y;Chugh, S;Caravan, W;Naser Al Deen, N;Hosseini, N;Newton, CJ;Krug, K;Xu, Y;Cho, KC;Hu, Y;Zhang, Y;Kumar-Sinha, C;Ma, W;Calinawan, A;Wyczalkowski, MA;Wendl, MC;Wang, Y;Guo, S;Zhang, C;Le, A;Dagar, A;Hopkins, A;Cho, H;Leprevost, FDV;Jing, X;Teo, GC;Liu, W;Reimers, MA;Pachynski, R;Lazar, AJ;Chinnaiyan, AM;Van Tine, BA;Zhang, B;Rodland, KD;Getz, G;Mani, DR;Wang, P;Chen, F;Hostetter, G;Thiagarajan, M;Linehan, WM;Fenyö, D;Jewell, SD;Omenn, GS;Mehra, R;Wiznerowicz, M;Robles, AI;Mesri, M;Hiltke, T;An, E;Rodriguez, H;Chan, DW;Ricketts, CJ;Nesvizhskii, AI;Zhang, H;Ding, L;Clinical Proteomic Tumor Analysis Consortium, ;
PMID: 36563681 | DOI: 10.1016/j.ccell.2022.12.001

Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.
Hedgehog-interacting protein acts in the habenula to regulate nicotine intake

Proceedings of the National Academy of Sciences of the United States of America

2022 Nov 15

Caligiuri, SPB;Howe, WM;Wills, L;Smith, ACW;Lei, Y;Bali, P;Heyer, MP;Moen, JK;Ables, JL;Elayouby, KS;Williams, M;Fillinger, C;Oketokoun, Z;Lehmann, VE;DiFeliceantonio, AG;Johnson, PM;Beaumont, K;Sebra, RP;Ibanez-Tallon, I;Kenny, PJ;
PMID: 36346845 | DOI: 10.1073/pnas.2209870119

Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the <i>Hhip</i> gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Mitochondrial glutamine transporter SLC1A5_var, a potential target to suppress astrocyte reactivity in Parkinson's Disease

Cell death & disease

2022 Nov 09

Liu, Y;Cao, L;Song, Y;Kang, Z;Liu, T;Ding, J;Hu, G;Lu, M;
PMID: 36351889 | DOI: 10.1038/s41419-022-05399-z

SLC1A5 variant (SLC1A5_var) is identified as a mitochondrial glutamine transporter in cancer cells recently. However, the role of SLC1A5_var in Parkinson's disease (PD) is completely unknown. Here, we found the significant downregulation of SLC1A5_var in astrocytes and midbrain of mice treated with MPTP/MPP+ and LPS. Importantly, overexpression of SLC1A5_var ameliorated but knockdown of SLC1A5_var exacerbated MPTP/MPP+- and LPS-induced mitochondrial dysfunction. Consequently, SLC1A5_var provided beneficial effects on PD pathology including improvement of PD-like motor symptoms and rescue of dopaminergic (DA) neuron degeneration through maintaining mitochondrial energy metabolism. Moreover, SLC1A5_var reduced astrocyte reactivity via inhibition of A1 astrocyte conversion. Further investigation demonstrated that SLC1A5_var restrained the secretion of astrocytic pro-inflammatory cytokines by blunting TLR4-mediated downstream pathways. This is the first study to prove that astrocytic SLC1A5_var inhibits neuroinflammation, and rescues the loss of DA neurons and motor symptoms involved in PD progression, which provides a novel target for PD treatment.
Adult human kidney organoids originate from CD24+ cells and represent an advanced model for adult polycystic kidney disease

Nature genetics

2022 Oct 27

Xu, Y;Kuppe, C;Perales-Patón, J;Hayat, S;Kranz, J;Abdallah, AT;Nagai, J;Li, Z;Peisker, F;Saritas, T;Halder, M;Menzel, S;Hoeft, K;Kenter, A;Kim, H;van Roeyen, CRC;Lehrke, M;Moellmann, J;Speer, T;Buhl, EM;Hoogenboezem, R;Boor, P;Jansen, J;Knopp, C;Kurth, I;Smeets, B;Bindels, E;Reinders, MEJ;Baan, C;Gribnau, J;Hoorn, EJ;Steffens, J;Huber, TB;Costa, I;Floege, J;Schneider, RK;Saez-Rodriguez, J;Freedman, BS;Kramann, R;
PMID: 36303074 | DOI: 10.1038/s41588-022-01202-z

Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR-Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling.
SCAMPR, a single-cell automated multiplex pipeline for RNA quantification and spatial mapping

Cell reports methods

2022 Oct 24

Ali Marandi Ghoddousi, R;Magalong, VM;Kamitakahara, AK;Levitt, P;
PMID: 36313803 | DOI: 10.1016/j.crmeth.2022.100316

Spatial gene expression, achieved classically through in situ hybridization, is a fundamental tool for topographic phenotyping of cell types in the nervous system. Newly developed techniques allow for visualization of multiple mRNAs at single-cell resolution and greatly expand the ability to link gene expression to tissue topography, yet there are challenges in efficient quantification and analysis of these high-dimensional datasets. We have therefore developed the single-cell automated multiplex pipeline for RNA (SCAMPR), facilitating rapid and accurate segmentation of neuronal cell bodies using a dual immunohistochemistry-RNAscope protocol and quantification of low- and high-abundance mRNA signals using open-source image processing and automated segmentation tools. Proof of principle using SCAMPR focused on spatial mapping of gene expression by peripheral (vagal nodose) and central (visual cortex) neurons. The analytical effectiveness of SCAMPR is demonstrated by identifying the impact of early life stress on gene expression in vagal neuron subtypes.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?