Ali Marandi Ghoddousi, R;Magalong, VM;Kamitakahara, AK;Levitt, P;
PMID: 36313803 | DOI: 10.1016/j.crmeth.2022.100316
Spatial gene expression, achieved classically through in situ hybridization, is a fundamental tool for topographic phenotyping of cell types in the nervous system. Newly developed techniques allow for visualization of multiple mRNAs at single-cell resolution and greatly expand the ability to link gene expression to tissue topography, yet there are challenges in efficient quantification and analysis of these high-dimensional datasets. We have therefore developed the single-cell automated multiplex pipeline for RNA (SCAMPR), facilitating rapid and accurate segmentation of neuronal cell bodies using a dual immunohistochemistry-RNAscope protocol and quantification of low- and high-abundance mRNA signals using open-source image processing and automated segmentation tools. Proof of principle using SCAMPR focused on spatial mapping of gene expression by peripheral (vagal nodose) and central (visual cortex) neurons. The analytical effectiveness of SCAMPR is demonstrated by identifying the impact of early life stress on gene expression in vagal neuron subtypes.
Abstract LB235: Characterizing tumor-infiltrated immune cells with spatial context using an integrated RNAscope-immunohistochemistry co-detection workflow in FFPE tissues
Dikshit, A;Phatak, J;Hernandez, L;Doolittle, E;Murlidhar, V;Zhang, B;Ma, X;
| DOI: 10.1158/1538-7445.am2021-lb235
Complex tissues such as tumors are comprised of multiple cells types and extracellular matrix. These cells include heterogenous populations of immune cells that infiltrate the tumors. Understanding the composition of these immune infiltrates in the tumor microenvironment (TME) can provide key insights to guide therapeutic intervention and predict treatment response. Thorough understanding of complex tissue dynamics and immune cell characterization requires a multi-omics approach. Simultaneous detection of RNA and protein using in situ hybridization (ISH) and immunohistochemistry/immunofluorescence (IHC/IF) can reveal cellular sources of secreted proteins, identify specific cell types, and visualize the spatial organization of cells within the tissue. However, a sequential workflow of ISH followed by IHC/IF frequently yields suboptimal protein detection because the protease digestion step in the ISH protocol resulting in poor antibody signal. Here we demonstrate a newly developed integrated ISH/IHC workflow that can substantially improve RNA-protein co-detection, enabling the visualization and characterization of tumor immune infiltrates at single-cell resolution with spatial and morphological context. To characterize tumor-infiltrating immune cells in a tumor TMA (tumor microarray), we utilized the RNAscope Multiplex Fluorescence assay in combination with the RNA-Protein Co-detection Kit to detect multiple immune cell populations. Immune cells such as macrophages, T cells and NK cells were detected using specific antibodies against CD68, CD8, CD4 and CD56, respectively. Precise characterization of these immune cells was achieved by using probes against targets such as CCL5, IFNG, GNZB, IL-12, NCR1 etc. that not only help in identifying specific immune cells but also assist in determining their activation states. We identified subsets of T cells such as CD4+ regulatory T cells and CD8+ cytotoxic T lymphocytes. Additionally, we were able to determine the activation states of CD8+ T cells by visualizing the expression of IFNG and GZMB. Furthermore, infiltrating macrophages were identified by detecting the CD68 protein expression while the M1 and M2 subsets were differentiated by detecting the M2-specific target RNA for CD163. Similarly, NK cells were identified by detecting CD56 protein in combination with CCL5 and NCR1 RNA expression. Interestingly, the degree of infiltration of the different immune cell populations varied based on the tumor type. In conclusion, the new RNAscope-ISH-IHC co-detection workflow and reagents enable optimized simultaneous visualization of RNA and protein targets by enhancing the compatibility of antibodies - including many previously incompatible antibodies - with RNAscope. This new workflow provides a powerful new approach to identifying and characterizing tumor infiltrating populations of immune cells.
International Journal of Biological Sciences
Yoon, D;Kim, E;Cho, S;Jung, S;Lee, K;Park, K;Lee, J;Kim, S;
| DOI: 10.7150/ijbs.74895
To understand the subcellular localization of RUNX2 and two lncRNAs, LINC02035 and LOC100130207, immunocytochemistry (for RUNX2 protein) and RNA _in situ_ hybridization assays (for both lncRNAs) were performed using human primary chondrocytes isolated from knee cartilage of OA patients. We confirmed that the RUNX2 protein was strongly detected in the nucleus of chondrocytes isolated from damaged cartilage (Figure 4A). The fractionated western blot results also showed that the RUNX2 protein was detected only in the nucleus of chondrocytes isolated from damaged cartilage (Figure 4B). To further understand the molecular mechanisms of the lncRNAs LINC02035 and LOC100130207, we performed an _in situ_ assay using primary chondrocytes derived from patients, because primary chondrocytes are a valuable model for studying OA pathogenesis. The results showed that both LINC02035 and LOC100130207 were highly expressed in chondrocytes isolated from the knee cartilage of patients with OA (Figure 4C). We then evaluated the mRNA levels and subcellular localization of both lncRNAs to elucidate their site of action using a commercially available kits in primary chondrocytes isolated from intact or damaged cartilage tissues. The results showed that both lncRNAs were more upregulated in primary chondrocytes isolated from damaged cartilage tissue than in intact cartilage tissue (Figure 4D). In primary chondrocytes, LINC02035 and LOC100130207 were merely detected in the cytoplasm of human primary chondrocytes and both lncRNAs were localized to nucleus (Figure 4E). Likewise, we also studied the subcellular localization of both lncRNAs in TC28a2 cells. The results showed that LINC02035 and LOC100130207 were evenly distributed in the nucleus and cytoplasm of normal chondrocytes (Figure 4F, left). However, both lncRNAs were preferentially localized to the nucleus and to a lesser extent to the cytoplasm after TC28a2 cells were treated with hypertrophic medium or TNF-α (Figure 4F, middle and right). To investigate whether RUNX2 is regulated at the post-translational level during hypertrophic changes in chondrocytes, human primary chondrocytes or TC28a2 cells were treated with the proteasome inhibitor MG132. The results showed that the protein level of RUNX2 was dose-dependently increased by MG132 treatment (Figure 4G-H), indicating that the upregulation of RUNX2 in osteoarthritic or hypertrophic chondrocytes occurs at the post-translational level. To examine whether both lncRNAs are involved in the stabilization of RUNX2 protein during hypertrophic differentiation and the inflammatory response in chondrocytes, IP was conducted to confirm the ubiquitination of RUNX2 protein. First, we investigated how the ubiquitination of RUNX2 protein is regulated during hypertrophic differentiation or the inflammatory response of chondrocytes, and as a result, it was confirmed that ubiquitination of RUNX2 was reduced by hypertrophic medium or TNF-α treatment (Figure 4I). However, ubiquitination of RUNX2 protein was clearly increased in TC28a2 cells transfected with siRNAs targeting LINC02035 or LOC100130207, even though the cells were treated with hypertrophic medium or TNF-α (Figure 4J-K). These results suggest that both lncRNAs upregulated during hypertrophic differentiation and the inflammatory response in chondrocytes contribute to the stabilization of the RUNX2 protein.