Grunddal, KV;Jensen, EP;Ørskov, C;Andersen, DB;Windeløv, JA;Poulsen, SS;Rosenkilde, MM;Knudsen, LB;Pyke, C;Holst, JJ;
PMID: 34662392 | DOI: 10.1210/endocr/bqab216
Therapies based on glucagon-like peptide-1 receptor (GLP-1R) agonism are highly effective in treating type 2 diabetes and obesity, but the localization of GLP-1Rs mediating the antidiabetic and other possible actions of GLP-1 is still debated. The purpose with this study was to identify sites of GLP-1R mRNA and protein expression in the mouse gastrointestinal system by means of GLP-1R antibody immunohistochemistry, Glp1r mRNA fluorescence in situ hybridization, and 125I-exendin (9-39) autoradiography. As expected, GLP-1R staining was observed in almost all β-cells in the pancreatic islets, but more rarely in α- and δ-cells. In the stomach, GLP-1R staining was found exclusively in the gastric corpus mucous neck cells, known to protect the stomach mucosa. The Brunner glands were strongly stained for GLP-1R, and pretreatment with GLP-1 agonist exendin-4 caused internalization of the receptor and mucin secretion, while pretreatment with phosphate-buffered saline or antagonist exendin (9-39) did not. In the intestinal mucosa, GLP-1R staining was observed in intraepithelial lymphocytes, lamina propria lymphocytes, and enteroendocrine cells containing secretin, peptide YY, and somatostatin, but not cholecystokinin. GLP-1R staining was seen in nerve fibers within the choline acetyl transferase- and nitric oxide-positive myenteric plexuses from the gastric corpus to the distal large intestine being strongest in the mid- and hindgut area. Finally, intraperitoneal administration of radiolabeled exendin (9-39) strongly labeled myenteric fibers. In conclusion, this study expands our knowledge of GLP-1R localization and suggests that GLP-1 may serve an important role in modulating gastrointestinal health and mucosal protection.
International Journal of Biological Sciences
Yoon, D;Kim, E;Cho, S;Jung, S;Lee, K;Park, K;Lee, J;Kim, S;
| DOI: 10.7150/ijbs.74895
To understand the subcellular localization of RUNX2 and two lncRNAs, LINC02035 and LOC100130207, immunocytochemistry (for RUNX2 protein) and RNA _in situ_ hybridization assays (for both lncRNAs) were performed using human primary chondrocytes isolated from knee cartilage of OA patients. We confirmed that the RUNX2 protein was strongly detected in the nucleus of chondrocytes isolated from damaged cartilage (Figure 4A). The fractionated western blot results also showed that the RUNX2 protein was detected only in the nucleus of chondrocytes isolated from damaged cartilage (Figure 4B). To further understand the molecular mechanisms of the lncRNAs LINC02035 and LOC100130207, we performed an _in situ_ assay using primary chondrocytes derived from patients, because primary chondrocytes are a valuable model for studying OA pathogenesis. The results showed that both LINC02035 and LOC100130207 were highly expressed in chondrocytes isolated from the knee cartilage of patients with OA (Figure 4C). We then evaluated the mRNA levels and subcellular localization of both lncRNAs to elucidate their site of action using a commercially available kits in primary chondrocytes isolated from intact or damaged cartilage tissues. The results showed that both lncRNAs were more upregulated in primary chondrocytes isolated from damaged cartilage tissue than in intact cartilage tissue (Figure 4D). In primary chondrocytes, LINC02035 and LOC100130207 were merely detected in the cytoplasm of human primary chondrocytes and both lncRNAs were localized to nucleus (Figure 4E). Likewise, we also studied the subcellular localization of both lncRNAs in TC28a2 cells. The results showed that LINC02035 and LOC100130207 were evenly distributed in the nucleus and cytoplasm of normal chondrocytes (Figure 4F, left). However, both lncRNAs were preferentially localized to the nucleus and to a lesser extent to the cytoplasm after TC28a2 cells were treated with hypertrophic medium or TNF-α (Figure 4F, middle and right). To investigate whether RUNX2 is regulated at the post-translational level during hypertrophic changes in chondrocytes, human primary chondrocytes or TC28a2 cells were treated with the proteasome inhibitor MG132. The results showed that the protein level of RUNX2 was dose-dependently increased by MG132 treatment (Figure 4G-H), indicating that the upregulation of RUNX2 in osteoarthritic or hypertrophic chondrocytes occurs at the post-translational level. To examine whether both lncRNAs are involved in the stabilization of RUNX2 protein during hypertrophic differentiation and the inflammatory response in chondrocytes, IP was conducted to confirm the ubiquitination of RUNX2 protein. First, we investigated how the ubiquitination of RUNX2 protein is regulated during hypertrophic differentiation or the inflammatory response of chondrocytes, and as a result, it was confirmed that ubiquitination of RUNX2 was reduced by hypertrophic medium or TNF-α treatment (Figure 4I). However, ubiquitination of RUNX2 protein was clearly increased in TC28a2 cells transfected with siRNAs targeting LINC02035 or LOC100130207, even though the cells were treated with hypertrophic medium or TNF-α (Figure 4J-K). These results suggest that both lncRNAs upregulated during hypertrophic differentiation and the inflammatory response in chondrocytes contribute to the stabilization of the RUNX2 protein.