Vet Immunol Immunopathol.
McGill JL, Sacco RE.
PMID: 26923879 | DOI: 10.1016/j.vetimm.2016.02.012
γδ T cells are a subset of nonconventional T cells that play a critical role in bridging the innate and adaptive arms of the immune system. γδ T cells are particularly abundant in ruminant species and may constitute up to 60% of the circulating lymphocyte pool in young cattle. The frequency of circulating γδ T cells is highest in neonatal calves and declines as the animal ages, suggesting these cells may be particularly important in the immune system of the very young. Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory infection in calves, and is most severe in animals under one year of age. BRSV is also a significant factor in the development of bovine respiratory disease complex (BRDC), the leading cause of morbidity and mortality in feedlot cattle. Human respiratory syncytial virus (RSV) is closely related to BRSV and a leading cause of lower respiratory tract infection in infants and children worldwide. BRSV infection in calves shares striking similarities with RSV infection in human infants. To date, there have been few studies defining the role of γδ T cells in the immune response to BRSV or RSV infection in animals or humans, respectively. However, emerging evidence suggests that γδ T cells may play a critical role in the early recognition of infection and in shaping the development of the adaptive immune response through inflammatory chemokine and cytokine production. Further, while it is clear that γδ T cells accumulate in the lungs during BRSV and RSV infection, their role in protection vs. immunopathology remains unclear. This review will summarize what is currently known about the role of γδ T cells in the immune response to BRSV and BRDC in cattle, and where appropriate, draw parallels to the role of γδ T cells in the human response to RSV infection.
Cancer immunology, immunotherapy : CII
Kawaguchi, S;Kawahara, K;Fujiwara, Y;Ohnishi, K;Pan, C;Yano, H;Hirosue, A;Nagata, M;Hirayama, M;Sakata, J;Nakashima, H;Arita, H;Yamana, K;Gohara, S;Nagao, Y;Maeshiro, M;Iwamoto, A;Hirayama, M;Yoshida, R;Komohara, Y;Nakayama, H;
PMID: 35044489 | DOI: 10.1007/s00262-022-03149-w
The CD169+ macrophages in lymph nodes are implicated in cytotoxic T lymphocyte (CTL) activation and are associated with improved prognosis in several malignancies. Here, we investigated the significance of CD169+ macrophages in oral squamous cell carcinoma (OSCC). Further, we tested the anti-tumor effects of naringenin, which has been previously shown to activate CD169+ macrophages, in a murine OSCC model. Immunohistochemical analysis for CD169 and CD8 was performed on lymph node and primary tumor specimens from 89 patients with OSCC. We also evaluated the effects of naringenin on two murine OSCC models. Increased CD169+ macrophage counts in the regional lymph nodes correlated with favorable prognosis and CD8+ cell counts within tumor sites. Additionally, naringenin suppressed tumor growth in two murine OSCC models. The mRNA levels of CD169, interleukin (IL)-12, and C-X-C motif chemokine ligand 10 (CXCL10) in lymph nodes and CTL infiltration in tumors significantly increased following naringenin administration in tumor-bearing mice. These results suggest that CD169+ macrophages in lymph nodes are involved in T cell-mediated anti-tumor immunity and could be a prognostic marker for patients with OSCC. Moreover, naringenin is a new potential agent for CD169+ macrophage activation in OSCC treatment.
Good, PI;Li, L;Hurst, HA;Serrano-Herrera, IM;Xu, K;Rao, M;Bateman, DA;Al-Awqati, Q;D'Agati, VD;Costantini, F;Lin, F;
PMID: 36626229 | DOI: 10.1172/jci.insight.161316
Preterm birth results in low nephron endowment and increased risk of acute kidney injury (AKI) and chronic kidney disease (CKD). To understand the pathogenesis of AKI and CKD in preterm humans, we generated novel mouse models with a 30-70% reduction in nephron number by inhibiting or deleting Ret tyrosine kinase in the developing ureteric bud. These mice developed glomerular and tubular hypertrophy followed by the transition to CKD, recapitulating the renal pathological changes seen in humans born preterm. We injected neonatal mice with gentamicin, a ubiquitous nephrotoxic exposure in preterm infants, and detected more severe proximal tubular injury in mice with low nephron number compared to controls with normal nephron number. Mice with low nephron number have reduced proliferative repair with more rapid development of CKD. Furthermore, mice had more profound inflammation with highly elevated levels of MCP-1 and CXCL10, produced in part by damaged proximal tubules. Our study directly links low nephron endowment with postnatal renal hypertrophy, which in this model is maladaptive and results in CKD. Underdeveloped kidneys are more susceptible to gentamicin-induced AKI, suggesting that AKI in the setting of low nephron number is more severe and further increases the risk of CKD in this vulnerable population.
Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine
Xue, L;Bao, L;Roediger, J;Su, Y;Shi, B;Shi, YB;
PMID: 34158114 | DOI: 10.1186/s13578-021-00627-z
Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse.We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium.We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged.Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult.
Virchows Arch. 2015 Jun 13.
Olfactomedin 4 (OLFM4) has been demonstrated to be upregulated in various cancers and involved in many cellular processes such as cell adhesion, apoptosis, and cell proliferation. In gastric cancer, clinicopathological relevance of OLFM4 expression has been reported. However, there are few studies showing how expression of OLFM4 evolves during multistep gastric carcinogenesis. In this study, we investigated OLFM4 expression during gastric carcinogenesis using RNA in situ hybridization (ISH). We found that OLFM4 expression is absent in normal gastric mucosa, begins to appear at the isthmus region in gastric glands in chronic gastritis, and is remarkably increased in intestinal metaplasia (IM). Interestingly, gastric-type glands around IM frequently expressed OLFM4 before CDX2 was expressed, suggesting that OLFM4 might be involved in regulating CDX2 expression. However, overexpression of OLFM4 failed to induce CDX2 transcription. All gastric adenomas were strongly positive for OLFM4. OLFM4 expression was higher in intestinal type, well to moderately differentiated and early-stage adenocarcinomas, and decreased in poorly differentiated and advanced-stage gastric cancer (GC). Although OLFM4 expression had no prognostic value for GC overall (P = 0.441), it was associated with poor survival of GC in stage II, III, and IV (P = 0.018), suggesting that OLFM4 expression has prognostic significance for late-stage GC. Our findings suggest that OLFM4 is not only involved in early stages of gastric carcinogenesis but also a useful prognostic marker for advanced GC, which is encouraging for further studies exploring OLFM4 as a potential target for therapy of GC.
PLoS One. 2015 May 21;10(5):e0127300.
Jang BG, Lee BL, Kim WH.
PMID: 26015511 | DOI: clincanres.3357.2014.
Gastric intestinal metaplasia (IM) is a highly prevalent preneoplastic lesion; however, the molecular mechanisms regulating its development remain unclear. We have previously shown that a population of cells expressing the intestinal stem cell (ISC) marker LGR5 increases remarkably in IM. In this study, we further investigated the molecular characteristics of these LGR5+ cells in IM by examining the expression profile of several ISC markers. Notably, we found that ISC markers-including OLFM4 and EPHB2-are positively associated with the CDX2 expression in non-tumorous gastric tissues. This finding was confirmed in stomach lesions with or without metaplasia, which demonstrated that OLFM4 and EPHB2 expression gradually increased with metaplastic progression. Moreover, RNA in situ hybridization revealed that LGR5+ cells coexpress several ISC markers and remained confined to the base of metaplastic glands, reminiscent to that of normal intestinal crypts, whereas those in normal antral glands expressed none of these markers. Furthermore, a large number of ISC marker-expressing cells were diffusely distributed in gastric adenomas, suggesting that these markers may facilitate gastric tumorigenesis. In addition, Barrett's esophagus (BE)-which is histologically similar to intestinal metaplasia-exhibited a similar distribution of ISC markers, indicating the presence of a stem cell population with intestinal differentiation potential. In conclusion, we identified that LGR5+ cells in gastric IM and BE coexpress ISC markers, and exhibit the same expression profile as those found in normal intestinal crypts. Taken together, these results implicate an intestinal-like stem cell population in the pathogenesis of IM, and provide an important basis for understanding the development and maintenance of this disease.
Boulay AC, Gilbert A, Oliveira Moreira V, Blugeon C, Perrin S, Pouch J, Le Crom S, Ducos B, Cohen-Salmon M.
PMID: 29565275 | DOI: 10.3390/brainsci8040050
Astrocytes are the most abundant glial cells of the central nervous system and have recently been recognized as crucial in the regulation of brain immunity. In most neuropathological conditions, astrocytes are prone to a radical phenotypical change called reactivity, which plays a key role in astrocyte contribution to neuroinflammation. However, how astrocytes regulate brain immunity in healthy conditions is an understudied question. One of the astroglial molecule involved in these regulations might be Connexin 43 (Cx43), a gap junction protein highly enriched in astrocyte perivascular endfeet-terminated processes forming the glia limitans. Indeed, Cx43 deletion in astrocytes (Cx43KO) promotes a continuous immune recruitment and an autoimmune response against an astrocyte protein, without inducing any brain lesion. To investigate the molecular basis of this unique immune response, we characterized the polysomal transcriptome of hippocampal astrocytes deleted for Cx43. Our results demonstrate that, in the absence of Cx43, astrocytes adopt an atypical reactive status with no change in most canonical astrogliosis markers, but with an upregulation of molecules promoting immune recruitment, complement activation as well as anti-inflammatory processes. Intriguingly, while several of these upregulated transcriptional events suggested an activation of the γ-interferon pathway, no increase in this cytokine or activation of related signaling pathways were found in Cx43KO. Finally, deletion of astroglial Cx43 was associated with the upregulation of several angiogenic factors, consistent with an increase in microvascular density in Cx43KO brains. Collectively, these results strongly suggest that Cx43 controls immunoregulatory and angiogenic properties of astrocytes.
American journal of respiratory and critical care medicine
Cunningham, CM;Li, M;Ruffenach, G;Doshi, M;Aryan, L;Hong, J;Park, J;Hrncir, H;Medzikovic, L;Umar, S;Arnold, AP;Eghbali, M;
PMID: 35504005 | DOI: 10.1164/rccm.202110-2309OC
Idiopathic pulmonary arterial hypertension (PAH) is a terminal pulmonary vascular disease characterized by increased pressure, right ventricular failure and death. PAH exhibits a striking sex bias and is up to 4x more prevalent in females. Understanding the molecular basis behind sex differences could help uncover novel therapies.We previously discovered the Y-Chromosome is protective against hypoxia-induced experimental PH which may contribute to sex differences in PAH. Here, we identify the gene responsible for Y-Chromosome protection, investigate key downstream autosomal genes, and demonstrate a novel preclinical therapy. Methods, Measurements and Main Results: To test the effect of Y-Chromosome genes on PH development, we knocked down each Y-Chromosome gene expressed in the lung via intratracheal instillation of siRNA in gonadectomized male mice exposed to hypoxia. Knockdown of Y-Chromosome gene Uty resulted in more severe PH measured by increased right ventricular pressure and decreased pulmonary artery acceleration time. RNA-sequencing revealed an increase in proinflammatory chemokines Cxcl9 and Cxcl10 as a result of Uty knockdown. We found CXCL9 and CXCL10 significantly upregulated in human PAH lungs, with more robust upregulation in PAH females. Treatment of human pulmonary artery endothelial cells with CXCL9 and CXCL10 triggered apoptosis. Inhibition of CXCL9 and CXCL10 expression in male Uty knockout mice and CXCL9 and CXCL10 activity in female rats significantly reduced PH severity.Uty, is protective against PH. Reduction of Uty expression results in increased expression of proinflammatory chemokines CXCL9 and CXCL10 which trigger endothelial cell death and PH. Inhibition of Cxcl9 and Cxcl10 rescues PH development in multiple experimental models.
Sheahan, BJ;Theriot, CM;Cortes, JE;Dekaney, CM;
PMID: 35012435 | DOI: 10.1080/19490976.2021.2018898
Acute intestinal mucositis is a common off-target effect of chemotherapy, leading to co-morbidities such as vomiting, diarrhea, sepsis, and death. We previously demonstrated that the presence of enteric bacteria modulates the extent of jejunal epithelial damage induced by doxorubicin (DXR) in mice. Despite conventional thinking of the crypt as a sterile environment, recent evidence suggests that bacterial signaling influences aISC function. In this study, we labeled aISCs using transgenic Lgr5-driven fluorescence or with immunostaining for OLFM4. We examined the effect of DXR in both germ free (GF) mice and mice depleted of microbiota using an established antimicrobial treatment protocol (AMBx). We found differences in DXR-induced loss of aISCs between GF mice and mice treated with AMBx. aISCs were decreased after DXR in GF mice, whereas AMBx mice retained aISC expression after DXR. Neither group of mice exhibited an inflammatory response to DXR, suggesting the difference in aISC retention was not due to differences in local tissue inflammation. Therefore, we suspected that there was a protective microbial signal present in the AMBx mice that was not present in the GF mice. 16S rRNA sequencing of jejunal luminal contents demonstrated that AMBx altered the fecal and jejunal microbiota. In the jejunal contents, AMBx mice had increased abundance of Ureaplasma and Burkholderia. These results suggest pro-survival signaling from microbiota in AMBx-treated mice to the aISCs, and that this signaling maintains aISCs in the face of chemotherapeutic injury. Manipulation of the enteric microbiota presents a therapeutic target for reducing the severity of chemotherapy-associated mucositis.
Abstract Aims Intestinal stem cell (ISC) markers such as LGR5, ASCL2, EPHB2 and OLFM4 and their clinical implications have been extensively studied in colorectal cancers (CRCs). However, little is known about their expression in precancerous lesions of CRCs. Here, we investigated the expression and distribution of ISC markers in serrated polyps and conventional adenomas. Methods and results RT-PCR analysis revealed that all ISC markers were significantly upregulated in conventional adenomas with low grade dysplasia (CALGs) compared with other lesions. RNA in situ hybridization confirmed that CALGs exhibited strong and diffuse expression of all ISC markers, which indicate a stem cell-like phenotype. However, normal colonic mucosa hyperplastic polyps and sessile serrated adenomas harbored LGR5+ cells that were confined to the crypt base and demonstrated an organized expression of ISC markers. Notably, in traditional serrated adenomas, expression of LGR5 and ASCL2 was localized to the ectopic crypts as in the normal crypts, but expression of EPHB2 and OLFM4 was distributed in a diffuse manner, which is suggestive of a progenitor-like features. Conclusions The expression and distribution profile of ISC markers possibly provides insights into the organization of stem and progenitor-like cells in each type of precancerous lesion of CRC
Cooley, A;Madhukaran, S;Stroebele, E;Colon Caraballo, M;Wang, L;Akgul, Y;Hon, GC;Mahendroo, M;
PMID: 36718364 | DOI: 10.1016/j.isci.2023.105953
The cervical epithelium undergoes changes in proliferation, differentiation, and function that are critical to ensure fertility and maintain pregnancy. Here, we identify cervical epithelial subtypes in non-pregnant, pregnant, and in labor mice using single-cell transcriptome and spatial analysis. We identify heterogeneous subpopulations of epithelia displaying spatial and temporal specificity. Notably in pregnancy, two goblet cell subtypes are present in the most luminal layers with one goblet population expanding earlier in pregnancy than the other goblet population. The goblet populations express novel protective factors and distinct mucosal networks. Single-cell analysis in a model of cervical epithelial barrier disruption indicates untimely basal cell proliferation precedes the expansion of goblet cells with diminished mucosal integrity. These data demonstrate how the cervical epithelium undergoes continuous remodeling to maintain dynamic states of homeostasis in pregnancy and labor, and provide a framework to understand perturbations in epithelial health that increase the risk of premature birth.
Cloft, SE;Kinstler, SR;Reno, KE;Sellers, HS;Franca, M;Ecco, R;Lee, MD;Maurer, JJ;Wong, EA;
PMID: 35191652 | DOI: 10.1637/21-00109
Runting stunting syndrome (RSS) in broiler chickens is characterized by altered intestinal morphology and gene expression and stunted growth. The objective of this study was to conduct a retrospective study of gene expression in stem and differentiated cells in the small intestine of RSS chicks. Two different models of RSS were analyzed: broiler chicks that were experimentally infected and broiler chicks that were naturally infected. Experimentally infected chicks were exposed to litter from infected flocks (RSS-litter chicks) or infected with astrovirus (RSS-astrovirus chicks). Intestinal samples from naturally infected chicks showing clinical signs of RSS were acquired from commercial farms in Georgia and were brought into a poultry diagnostic lab (RSS-clinical-GA) and from farms in Brazil that had a history of RSS (RSS-clinical-BR). The RSS-clinical-BR chicks were separated into those that were positive or negative for gallivirus based on DNA sequencing. Intestinal morphology and intestinal cell type were identified in archived formalin-fixed, paraffin-embedded tissues. In situ hybridization for cell-specific mRNA was used to identify intestinal stem cells expressing olfactomedin 4 (Olfm4), proliferating cells expressing Ki67, absorptive cells expressing sodium glucose cotransporter 1 (SGLT1) and peptide transporter 1 (PepT1), and goblet cells expressing mucin 2 (Muc2). RSS-litter and RSS-clinical-GA chicks showed 4% to 7.5% cystic crypts, while gallivirus-positive RSS-clinical-BR chicks showed 11.7% cystic crypts. RSS-astrovirus and gallivirus-negative RSS-clinical-BR chicks showed few cystic crypts. RSS-litter and gallivirus-positive RSS-clinical-BR chicks showed an increase in crypt depth compared to control or gallivirus-negative chicks, respectively. There was no expression of Olfm4 mRNA in the stem cells of RSS-litter and RSS-clinical-GA chicks, in contrast to the normal expression of Olfm4 mRNA in RSS-astrovirus and RSS-clinical-BR chicks. All chicks regardless of infection status showed normal expression of Ki67 mRNA in crypt cells, Muc2 mRNA in goblet cells, and SGLT1 or PepT1 mRNA in enterocytes. These results demonstrate that RSS, which can be induced by different etiologies, can show differences in the expression of the stem cell marker Olfm4.