Cold Spring Harbor perspectives in biology
Ganier, C;Rognoni, E;Goss, G;Lynch, M;Watt, FM;
PMID: 35667795 | DOI: 10.1101/cshperspect.a041238
Fibroblasts are the main cell type in the dermis. They are responsible for the synthesis and deposition of structural proteins such as collagen and elastin, which are integrated into the extracellular matrix (ECM). Mouse and human studies using flow cytometry, cell culture, skin reconstitution, and lineage tracing experiments have shown the existence of different subpopulations of fibroblasts, including papillary fibroblasts, reticular fibroblasts, and fibroblasts comprising the dermal papilla at the base of the hair follicle. In recent years, the technological advances in single-cell sequencing have allowed researchers to study the repertoire of cells present in full-thickness skin including the dermis. Multiple groups have confirmed that distinct fibroblast populations can be identified in mouse and human dermis on the basis of differences in the transcriptional profile. Here, we discuss the current state of knowledge regarding dermal fibroblast heterogeneity in healthy mouse and human skin, highlighting the similarities and differences between mouse and human fibroblast subpopulations. We also discuss how fibroblast heterogeneity may provide insights into physiological wound healing and its dysfunction in pathological states such as hypertrophic and keloid scars.
Vu, R;Jin, S;Sun, P;Haensel, D;Nguyen, QH;Dragan, M;Kessenbrock, K;Nie, Q;Dai, X;
PMID: 35926463 | DOI: 10.1016/j.celrep.2022.111155
Delayed and often impaired wound healing in the elderly presents major medical and socioeconomic challenges. A comprehensive understanding of the cellular/molecular changes that shape complex cell-cell communications in aged skin wounds is lacking. Here, we use single-cell RNA sequencing to define the epithelial, fibroblast, immune cell types, and encompassing heterogeneities in young and aged skin during homeostasis and identify major changes in cell compositions, kinetics, and molecular profiles during wound healing. Our comparative study uncovers a more pronounced inflammatory phenotype in aged skin wounds, featuring neutrophil persistence and higher abundance of an inflammatory/glycolytic Arg1Hi macrophage subset that is more likely to signal to fibroblasts via interleukin (IL)-1 than in young counterparts. We predict systems-level differences in the number, strength, route, and signaling mediators of putative cell-cell communications in young and aged skin wounds. Our study exposes numerous cellular/molecular targets for functional interrogation and provides a hypothesis-generating resource for future wound healing studies.
Houser, A;Kazmi, A;Nair, A;Ji, A;
| DOI: 10.1016/j.xjidi.2023.100198
The development of multi-omic profiling tools has rapidly expanded in recent years, along with their use in profiling skin tissues in various contexts, including dermatologic diseases. Among these tools, single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) have emerged as widely adopted and powerful assays for elucidating key cellular components and their spatial arrangement within skin disease. Here, we review recent biological insights gained from the use of scRNA-seq and ST, and the advantages of combining both, for profiling skin disease, including aberrant wound healing, inflammatory skin diseases, and cancer. We discuss the role of scRNA-seq and ST for improving skin disease treatments and moving towards the goal of achieving precision medicine in dermatology, whereby patients can be optimally matched to treatments that maximize therapeutic response.
Journal of the American Academy of Dermatology
Singh, K;Valido, K;Swallow, M;Okifo, KO;Wang, A;Cohen, JM;Damsky, W;
PMID: 36780951 | DOI: 10.1016/j.jaad.2022.12.052
Dupilumab has revolutionized the treatment of atopic dermatitis. However, not all patients respond optimally, and this may relate to underlying molecular heterogeneity. Nevertheless, clinically useful and accessible methods to assess such heterogeneity have not been developed.We assessed whether cytokine staining and/or histologic features correlate with clinical response to dupilumab in patients with eczematous dermatitis.We retrospectively analyzed biopsies from 61 patients with eczematous dermatitis treated with dupilumab (90.2% met Hanifin-Rajka criteria for atopic dermatitis). RNA in situ hybridization was used to measure markers of type 2 (interleukin [IL]4, IL13), type 1 (interferon gamma) and type 3 (IL17A, IL17F, IL22) inflammation. Histologic features were also assessed. Patterns were compared among complete (n = 16), partial (n = 37), and nonresponders (n = 8) to dupilumab.We found that increased IL13 expression was associated with optimal response to dupilumab. In contrast, nonresponders tended to express less IL13 and relatively greater levels of type 1 and 3 cytokines. In addition, certain histologic features tended to correlate with improved response to dupilumab.Retrospective approach and small size of the nonresponder group.Cytokine RNA in situ hybridization may aid in treatment selection for eczematous disorders. Moreover, personalization of treatment selection for inflammatory skin diseases may be possible.
British Journal of Dermatology
Talagas, M;
| DOI: 10.1093/bjd/ljac066/6788796
Sensory neurons innervating the skin are conventionally thought to be the sole transducers of 3 touch, temperature, pain, and itch. However, recent studies have shown that keratinocytes - like 4 Merkel cells - act as sensory transducers, whether for innocuous or noxious mechanical, thermal, 5 or chemical stimuli and communicate with intra-epidermal free nerve endings via chemical 6 synaptic contacts. This paradigm shift leads to the consideration of the whole epidermis as a 7 sensory epithelium. Sensory neurons additionally function as an efferent system. Through the 8 release of neuropeptides in intimate neuro-epidermal contact areas, they contribute to epidermal 9 homeostasis and to the pathogenesis of inflammatory skin diseases. To counteract the dogma 10 regarding neuro-cutaneous interactions, seen exclusively from the perspective of soluble and 11 spreading mediators, this review highlights the essential contribution of the unrecognized 12 anatomical contacts between the sensory neurons and the epidermal cells (keratinocytes, 13 melanocytes, Langerhans cells, and Merkel cells) which serve the reciprocal dialogue between 14 the skin, nervous system, and immune system.