Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (32)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (8) Apply TBD filter
  • GCG (3) Apply GCG filter
  • FOS (2) Apply FOS filter
  • GLP1R (2) Apply GLP1R filter
  • Oxt (2) Apply Oxt filter
  • Pomc (2) Apply Pomc filter
  • ACTA2 (1) Apply ACTA2 filter
  • VTN (1) Apply VTN filter
  • AVP (1) Apply AVP filter
  • DRD1 (1) Apply DRD1 filter
  • DRD2 (1) Apply DRD2 filter
  • FFAR1 (1) Apply FFAR1 filter
  • FGFR1 (1) Apply FGFR1 filter
  • GDF15 (1) Apply GDF15 filter
  • SLC32A1 (1) Apply SLC32A1 filter
  • HTR3B (1) Apply HTR3B filter
  • AGRP (1) Apply AGRP filter
  • Sst (1) Apply Sst filter
  • Aldh1l1 (1) Apply Aldh1l1 filter
  • Adcyap1 (1) Apply Adcyap1 filter
  • Npy (1) Apply Npy filter
  • PDGFRB (1) Apply PDGFRB filter
  • Trh (1) Apply Trh filter
  • Ldlr (1) Apply Ldlr filter
  • Crh (1) Apply Crh filter
  • Npy1r (1) Apply Npy1r filter
  • Tmem215 (1) Apply Tmem215 filter
  • CVB3 (1) Apply CVB3 filter
  • Slc17a6 (1) Apply Slc17a6 filter
  • OPRM1 (1) Apply OPRM1 filter
  • Trpm2 (1) Apply Trpm2 filter
  • Ins1 (1) Apply Ins1 filter
  • Nts (1) Apply Nts filter
  • Ghrh (1) Apply Ghrh filter
  • iCre (1) Apply iCre filter
  • Pnoc (1) Apply Pnoc filter
  • Ghsr (1) Apply Ghsr filter
  • Adipoq (1) Apply Adipoq filter
  • cFos (1) Apply cFos filter
  • BSG (1) Apply BSG filter
  • Crabp1 (1) Apply Crabp1 filter
  • Tbx19 (1) Apply Tbx19 filter
  • Rgs2 (1) Apply Rgs2 filter
  • SREBF2 (1) Apply SREBF2 filter
  • Cox4i2 (1) Apply Cox4i2 filter
  • Anxa2 (1) Apply Anxa2 filter
  • Unc13c (1) Apply Unc13c filter
  • NDUFA4L2 (1) Apply NDUFA4L2 filter
  • TDP43 (1) Apply TDP43 filter
  • Nkx2-4 (1) Apply Nkx2-4 filter

Product

  • RNAscope Multiplex Fluorescent Assay (10) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (8) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (4) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • TBD (2) Apply TBD filter
  • Basescope (1) Apply Basescope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter

Research area

  • (-) Remove Other: Metabolism filter Other: Metabolism (32)
  • diabetes (6) Apply diabetes filter
  • Obesity (4) Apply Obesity filter
  • Feeding Behavior (3) Apply Feeding Behavior filter
  • Neuroscience (3) Apply Neuroscience filter
  • Animal Model (1) Apply Animal Model filter
  • Brown Adipose Tissue (1) Apply Brown Adipose Tissue filter
  • Cell Biology (1) Apply Cell Biology filter
  • Diet (1) Apply Diet filter
  • Hypoglycemia (1) Apply Hypoglycemia filter
  • Inflammation (1) Apply Inflammation filter
  • Insulin (1) Apply Insulin filter
  • Liver (1) Apply Liver filter
  • osteoarthritis (1) Apply osteoarthritis filter
  • Oxygen (1) Apply Oxygen filter
  • Single-Cell and spatial omics (1) Apply Single-Cell and spatial omics filter
  • TDP-43 (1) Apply TDP-43 filter
  • type 1 diabetes (1) Apply type 1 diabetes filter
  • vasopressin (1) Apply vasopressin filter

Category

  • Publications (32) Apply Publications filter
Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation

Cell metabolism

2023 May 02

Chen, W;Mehlkop, O;Scharn, A;Nolte, H;Klemm, P;Henschke, S;Steuernagel, L;Sotelo-Hitschfeld, T;Kaya, E;Wunderlich, CM;Langer, T;Kononenko, NL;Giavalisco, P;Brüning, JC;
PMID: 37075752 | DOI: 10.1016/j.cmet.2023.03.019

Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.
Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound

Nature metabolism

2023 May 01

Yang, Y;Yuan, J;Field, RL;Ye, D;Hu, Z;Xu, K;Xu, L;Gong, Y;Yue, Y;Kravitz, AV;Bruchas, MR;Cui, J;Brestoff, JR;Chen, H;
PMID: 37231250 | DOI: 10.1038/s42255-023-00804-z

Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.
The anorectic and thermogenic effects of pharmacological lactate in male mice are confounded by treatment osmolarity and co-administered counterions

Nature metabolism

2023 Apr 01

Lund, J;Breum, AW;Gil, C;Falk, S;Sass, F;Isidor, MS;Dmytriyeva, O;Ranea-Robles, P;Mathiesen, CV;Basse, AL;Johansen, OS;Fadahunsi, N;Lund, C;Nicolaisen, TS;Klein, AB;Ma, T;Emanuelli, B;Kleinert, M;Sørensen, CM;Gerhart-Hines, Z;Clemmensen, C;
PMID: 37055619 | DOI: 10.1038/s42255-023-00780-4

Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.
Nutrient metabolism of the nucleus pulposus: A literature review

North American Spine Society journal

2023 Mar 01

Kodama, J;Wilkinson, KJ;Otsuru, S;
PMID: 36590450 | DOI: 10.1016/j.xnsj.2022.100191

Cells take in, consume, and synthesize nutrients for numerous physiological functions. This includes not only energy production but also macromolecule biosynthesis, which will further influence cellular signaling, redox homeostasis, and cell fate commitment. Therefore, alteration in cellular nutrient metabolism is associated with pathological conditions. Intervertebral discs, particularly the nucleus pulposus (NP), are avascular and exhibit unique metabolic preferences. Clinical and preclinical studies have indicated a correlation between intervertebral degeneration (IDD) and systemic metabolic diseases such as diabetes, obesity, and dyslipidemia. However, a lack of understanding of the nutrient metabolism of NP cells is masking the underlying mechanism. Indeed, although previous studies indicated that glucose metabolism is essential for NP cells, the downstream metabolic pathways remain unknown, and the potential role of other nutrients, like amino acids and lipids, is understudied. In this literature review, we summarize the current understanding of nutrient metabolism in NP cells and discuss other potential metabolic pathways by referring to a human NP transcriptomic dataset deposited to the Gene Expression Omnibus, which can provide us hints for future studies of nutrient metabolism in NP cells and novel therapies for IDD.
Type 2 diabetes is associated with increased circulating levels of 3-hydroxydecanoate activating GPR84 and neutrophil migration

iScience

2022 Nov 01

Mikkelsen, R;Arora, T;Trošt, K;Dmytriyeva, O;Jensen, S;Meijnikman, A;Olofsson, L;Lappa, D;Aydin, Ö;Nielsen, J;Gerdes, V;Moritz, T;van de Laar, A;de Brauw, M;Nieuwdorp, M;Hjorth, S;Schwartz, T;Bäckhed, F;
| DOI: 10.1016/j.isci.2022.105683

Obesity and diabetes are associated with inflammation and altered plasma levels of several metabolites, which may be involved in disease progression. Some metabolites can activate G protein-coupled receptors (GPCRs) expressed on immune cells where they can modulate metabolic inflammation. Here we find that 3-hydroxydecanoate is enriched in the circulation of obese individuals with type 2 diabetes (T2D) compared with non-diabetic controls. Administration of 3-hydroxydecanoate to mice promotes immune cell recruitment to adipose tissue, which was associated with adipose inflammation and increased fasting insulin levels. Furthermore, we demonstrate that 3-hydroxydecanoate stimulates migration of primary human and mouse neutrophils, but not monocytes, through GPR84 and Gαi signaling in vitro. Our findings indicate that 3-hydroxydecanoate is a T2D-associated metabolite that increases inflammatory responses and may contribute to the chronic inflammation observed in diabetes.
HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus

Nature metabolism

2022 Oct 01

Steuernagel, L;Lam, BYH;Klemm, P;Dowsett, GKC;Bauder, CA;Tadross, JA;Hitschfeld, TS;Del Rio Martin, A;Chen, W;de Solis, AJ;Fenselau, H;Davidsen, P;Cimino, I;Kohnke, SN;Rimmington, D;Coll, AP;Beyer, A;Yeo, GSH;Brüning, JC;
PMID: 36266547 | DOI: 10.1038/s42255-022-00657-y

The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalog and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here, we present an integrated reference atlas, 'HypoMap,' of the murine hypothalamus, consisting of 384,925 cells, with the ability to incorporate new additional experiments. We validate HypoMap by comparing data collected from Smart-Seq+Fluidigm C1 and bulk RNA sequencing of selected neuronal cell types with different degrees of cellular heterogeneity. Finally, via HypoMap, we identify classes of neurons expressing glucagon-like peptide-1 receptor (Glp1r) and prepronociceptin (Pnoc), and validate them using single-molecule in situ hybridization. Collectively, HypoMap provides a unified framework for the systematic functional annotation of murine hypothalamic cell types, and it can serve as an important platform to unravel the functional organization of hypothalamic neurocircuits and to identify druggable targets for treating metabolic disorders.
Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism

Cell metabolism

2022 Feb 01

Cheng, J;Yang, Z;Ge, XY;Gao, MX;Meng, R;Xu, X;Zhang, YQ;Li, RZ;Lin, JY;Tian, ZM;Wang, J;Ning, SL;Xu, YF;Yang, F;Gu, JK;Sun, JP;Yu, X;
PMID: 35108512 | DOI: 10.1016/j.cmet.2021.12.022

Along with functionally intact insulin, diabetes-associated insulin peptides are secreted by β cells. By screening the expression and functional characterization of olfactory receptors (ORs) in pancreatic islets, we identified Olfr109 as the receptor that detects insulin peptides. The engagement of one insulin peptide, insB:9-23, with Olfr109 diminished insulin secretion through Gi-cAMP signaling and promoted islet-resident macrophage proliferation through a β cell-macrophage circuit and a β-arrestin-1-mediated CCL2 pathway, as evidenced by β-arrestin-1-/- mouse models. Systemic Olfr109 deficiency or deficiency induced by Pdx1-Cre+/-Olfr109fl/fl specifically alleviated intra-islet inflammatory responses and improved glucose homeostasis in Akita- and high-fat diet (HFD)-fed mice. We further determined the binding mode between insB:9-23 and Olfr109. A pepducin-based Olfr109 antagonist improved glucose homeostasis in diabetic and obese mouse models. Collectively, we found that pancreatic β cells use Olfr109 to autonomously detect self-secreted insulin peptides, and this detection arrests insulin secretion and crosstalks with macrophages to increase intra-islet inflammation.
Agrp-negative arcuate NPY neurons drive feeding under positive energy balance via altering leptin responsiveness in POMC neurons

Cell metabolism

2023 May 10

Qi, Y;Lee, NJ;Ip, CK;Enriquez, R;Tasan, R;Zhang, L;Herzog, H;
PMID: 37201523 | DOI: 10.1016/j.cmet.2023.04.020

Neuropeptide Y (NPY) in the arcuate nucleus (ARC) is known as one of the most critical regulators of feeding. However, how NPY promotes feeding under obese conditions is unclear. Here, we show that positive energy balance, induced by high-fat diet (HFD) or in genetically obese leptin-receptor-deficient mice, leads to elevated Npy2r expression especially on proopiomelanocortin (POMC) neurons, which also alters leptin responsiveness. Circuit mapping identified a subset of ARC agouti-related peptide (Agrp)-negative NPY neurons that control these Npy2r expressing POMC neurons. Chemogenetic activation of this newly discovered circuitry strongly drives feeding, while optogenetic inhibition reduces feeding. Consistent with that, lack of Npy2r on POMC neurons leads to reduced food intake and fat mass. This suggests that under energy surplus conditions, when ARC NPY levels generally drop, high-affinity NPY2R on POMC neurons is still able to drive food intake and enhance obesity development via NPY released predominantly from Agrp-negative NPY neurons.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?