Investigative Ophthalmology & Visual Science
Anderson, K;Venkatesh, A;McKenty, T;
PURPOSE : ADOA is the most common inherited optic neuropathy, starting in the first decade of life and resulting in severe and progressive visual decline due to loss of RGCs. Most patients harbor loss-of-function mutations in the _OPA1 _gene that lead to haploinsufficiency. Reduced OPA1 protein levels result in impaired mitochondrial function in RGCs leading to cell death. Currently, there is no treatment for patients with ADOA. Targeted Augmentation of Nuclear Gene Output (TANGO) ASOs, such as STK-002, reduce the inclusion of a non-productive, alternatively spliced exon in _OPA1, _and leverage the wild-type allele to increase productive _OPA1_ mRNA and protein. We previously demonstrated that TANGO ASOs can increase OPA1 protein levels in human cell lines, rabbit retina, and ADOA patient fibroblasts. In this study, we evaluated ASO localization and OPA1 protein levels in the retina following intravitreal administration of STK-002 to NHPs.
Experimental eye research
Weh, E;Scott, K;Wubben, TJ;Besirli, CG;
PMID: 34965404 | DOI: 10.1016/j.exer.2021.108913
Inherited retinal diseases (IRDs) are a collection of rare genetic conditions, which can lead to complete blindness. A large number of causative genes have been identified for IRDs and while some success has been achieved with gene therapies, they are limited in scope to each individual gene and/or the specific mutation harbored by each patient with an IRD. Multiple studies are underway to elucidate common underlying mechanisms contributing to photoreceptor (PR) loss and to design gene-agnostic, pan-disease therapeutics. The rd10 mouse, which recapitulates slow degeneration of PRs, is an in vivo IRD model used commonly by vision researchers. Light deprivation by rearing animals in complete darkness significantly delays PR death in rd10 mice, subsequently increasing the time window for in vivo studies investigating neuroprotective strategies. Longitudinal in vivo retinal imaging following the same rd10 mice over time is a potential solution for reducing the number of animals required to complete a study. We describe a previously unreported phenotype in the dark-reared rd10 model that is characterized by dramatic PR degeneration following brief exposure to low-intensity light. This exquisite light sensitivity precludes the use of longitudinal studies employing in vivo imaging or other functional assessment requiring room light in rd10 mice and highlights the importance of closely following animal models of IRD to determine any deviations from the expected degeneration curve during routine experimentation.
Journal of neuroinflammation
Tabel, M;Wolf, A;Szczepan, M;Xu, H;Jägle, H;Moehle, C;Chen, M;Langmann, T;
PMID: 36115971 | DOI: 10.1186/s12974-022-02589-6
Dysfunctional humoral and cellular innate immunity are key components in the development and progression of age-related macular degeneration (AMD). Specifically, chronically activated microglia and their disturbed regulatory system contribute to retinal degeneration. Galectin-3, a β-galactose binding protein, is a potent driver of macrophage and microglia activation and has been implicated in neuroinflammation, including neurodegenerative diseases of the brain. Here, we hypothesized that genetic deficiency of galectin-3 or its modulation via TD139 dampens mononuclear phagocyte reactivity and delays retinal degeneration.Galectin-3 expression in AMD patients was analyzed by immunohistochemical stainings. Galectin-3 knockout and BALB/cJ mice were exposed to white bright light with an intensity of 15,000 lux for 1 h and Cx3cr1GFP/+ mice to focal blue light of 50,000 lux for 10 min. BALB/cJ and Cx3cr1GFP/+ mice received intraperitoneal injections of 15 mg/kg TD139 or vehicle for five consecutive days, starting one day prior to light exposure. The effects of galectin-3 deficiency or inhibition on microglia were analyzed by immunohistochemical stainings and in situ hybridization of retinal sections and flat mounts. Pro-inflammatory cytokine levels in the retina and retinal pigment epithelium (RPE) were quantified by qRT-PCR and transcriptomic changes were analyzed by RNA-sequencing. Retinal thickness and structure were evaluated by optical coherence tomography.We found that galectin-3 expression was strongly upregulated in reactive retinal mononuclear phagocytes of AMD patients and in the two related mouse models of light-induced retinal degeneration. The experimental in vivo data further showed that specific targeting of galectin-3 by genetic knockout or administration of the small-molecule inhibitor TD139 reduced microglia reactivity and delayed retinal damage in both light damage conditions.This study defines galectin-3 as a potent driver of retinal degeneration and highlights the protein as a drug target for ocular immunomodulatory therapies.
Wooff, Y;Cioanca, AV;Wills, E;Chu-Tan, JA;Sekar, R;Natoli, R;
PMID: 37180103 | DOI: 10.3389/fimmu.2023.1088654
Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, currently affecting over 350 billion people globally. For the most prevalent late-stage form of this disease, atrophic AMD, there are no available prevention strategies or treatments, in part due to inherent difficulties in early-stage diagnosis. Photo-oxidative damage is a well-established model for studying inflammatory and cell death features that occur in late-stage atrophic AMD, however to date has not been investigated as a potential model for studying early features of disease onset. Therefore, in this study we aimed to determine if short exposure to photo-oxidative damage could be used to induce early retinal molecular changes and advance this as a potential model for studying early-stage AMD.C57BL/6J mice were exposed to 1, 3, 6, 12, or 24h photo-oxidative damage (PD) using 100k lux bright white light. Mice were compared to dim-reared (DR) healthy controls as well as mice which had undergone long periods of photo-oxidative damage (3d and 5d-PD) as known timepoints for inducing late-stage retinal degeneration pathologies. Cell death and retinal inflammation were measured using immunohistochemistry and qRT-PCR. To identify retinal molecular changes, retinal lysates were sent for RNA sequencing, following which bioinformatics analyses including differential expression and pathway analyses were performed. Finally, to investigate modulations in gene regulation as a consequence of degeneration, microRNA (miRNA) expression patterns were quantified using qRT-PCR and visualized using in situ hybridization.Short exposure to photo-oxidative damage (1-24h-PD) induced early molecular changes in the retina, with progressive downregulation of homeostatic pathways including metabolism, transport and phototransduction observed across this time-course. Inflammatory pathway upregulation was observed from 3h-PD, preceding observable levels of microglia/macrophage activation which was noted from 6h-PD, as well as significant photoreceptor row loss from 24h-PD. Further rapid and dynamic movement of inflammatory regulator miRNA, miR-124-3p and miR-155-5p, was visualized in the retina in response to degeneration.These results support the use of short exposure to photo-oxidative damage as a model of early AMD and suggest that early inflammatory changes in the retina may contribute to pathological features of AMD progression including immune cell activation and photoreceptor cell death. We suggest that early intervention of these inflammatory pathways by targeting miRNA such as miR-124-3p and miR-155-5p or their target genes may prevent progression into late-stage pathology.
Celiker, C;Weissova, K;Černá, K;Oppelt, J;Sebestikova, J;Liskova, P;Barta, T;
| DOI: 10.2139/ssrn.4387701
Cells in the human retina must rapidly adapt to constantly changing visual stimuli. This fast adaptation to varying levels and wavelengths of light helps to regulate circadian rhythms and allows for adaptation to high levels of illumination, thereby enabling the rest of the visual system to remain responsive. It has been shown that retinal microRNA (miRNA) molecules play a key role in regulating these processes. However, despite extensive research using various model organisms, light-regulated miRNAs in human retinal cells remain unknown. Here, we aim to characterize these miRNAs. We generated light-responsive human retinal organoids that express miRNA families and clusters typically found in the retina. Using an in-house developed photostimulation device, we identified a subset of light-regulated miRNAs. Importantly, we found that these miRNAs are differentially regulated by distinct wavelengths of light and have a rapid turnover, highlighting the dynamic and adaptive nature of the human retina. These results provide important insights into the mechanisms by which the human retina adapts to changes in the environment and could have significant implications for studying the molecular mechanisms of light perception in the retina.
Al-Khindi, T;Sherman, MB;Kodama, T;Gopal, P;Pan, Z;Kiraly, JK;Zhang, H;Goff, LA;du Lac, S;Kolodkin, AL;
PMID: 35998637 | DOI: 10.1016/j.cub.2022.07.064
The diversity of visual input processed by the mammalian visual system requires the generation of many distinct retinal ganglion cell (RGC) types, each tuned to a particular feature. The molecular code needed to generate this cell-type diversity is poorly understood. Here, we focus on the molecules needed to specify one type of retinal cell: the upward-preferring ON direction-selective ganglion cell (up-oDSGC) of the mouse visual system. Single-cell transcriptomic profiling of up- and down-oDSGCs shows that the transcription factor Tbx5 is selectively expressed in up-oDSGCs. The loss of Tbx5 in up-oDSGCs results in a selective defect in the formation of up-oDSGCs and a corresponding inability to detect vertical motion. A downstream effector of Tbx5, Sfrp1, is also critical for vertical motion detection but not up-oDSGC formation. These results advance our understanding of the molecular mechanisms that specify a rare retinal cell type and show how disrupting this specification leads to a corresponding defect in neural circuitry and behavior.
Huan, T;Cheng, S;Tian, B;Punzo, C;Lin, H;Daly, M;Seddon, J;
| DOI: 10.1016/j.xops.2022.100206
Purpose To select individuals and families with low genetic burden for age-related macular degeneration (AMD), to inform the clinical diagnosis of macular disorders, and to find novel genetic variants associated with macular disease in affected families. Design Genetic association study based on targeted and whole exome sequencing. Participants 758 subjects (481 individuals with maculopathy and 277 controls), including 316 individuals in 72 families. Methods We focused on 150 genes involved in the complement, coagulation, and inflammatory pathways. Single-variant tests were performed on 3062 variants shared among 5 or more subjects using logistic regression. Gene-based tests were used to evaluate aggregate effects from rare and low frequency variants (at minor allele frequency [MAF]
Arsenijevic, Y;Berger, A;Udry, F;Kostic, C;
PMID: 36015231 | DOI: 10.3390/pharmaceutics14081605
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Chen, W;Liu, P;Liu, D;Huang, H;Feng, X;Fang, F;Li, L;Wu, J;Liu, L;Solow-Cordero, DE;Hu, Y;
PMID: 36357388 | DOI: 10.1038/s41467-022-34682-y
When the protein or calcium homeostasis of the endoplasmic reticulum (ER) is adversely altered, cells experience ER stress that leads to various diseases including neurodegeneration. Genetic deletion of an ER stress downstream effector, CHOP, significantly protects neuron somata and axons. Here we report that three tricyclic compounds identified through a small-scale high throughput screening using a CHOP promoter-driven luciferase cell-based assay, effectively inhibit ER stress by antagonizing their common target, histamine receptor H1 (HRH1). We further demonstrated that systemic administration of one of these compounds, maprotiline, or CRISPR-mediated retinal ganglion cell (RGC)-specific HRH1 inhibition, delivers considerable neuroprotection of both RGC somata and axons and preservation of visual function in two mouse optic neuropathy models. Finally, we determine that maprotiline restores ER homeostasis by inhibiting HRH1-mediated Ca2+ release from ER. In this work we establish maprotiline as a candidate neuroprotectant and HRH1 as a potential therapeutic target for glaucoma.
Huang, L;Ye, L;Li, R;Zhang, S;Qu, C;Li, S;Li, J;Yang, M;Wu, B;Chen, R;Huang, G;Gong, B;Li, Z;Yang, H;Yu, M;Shi, Y;Wang, C;Chen, W;Yang, Z;
| DOI: 10.1016/j.gendis.2022.11.007
The retinal pigment epithelium (RPE) and choroid are located behind the human retina and have multiple functions in the human visual system. Knowledge of the RPE and choroid cells and their gene expression profiles are fundamental for understanding retinal disease mechanisms and therapeutic strategies. Here, we sequenced the RNA of about 0.3 million single cells from human RPE and choroids across two regions and seven ages, revealing regional and age differences within the human RPE and choroid. Cell-cell interactions highlight the broad connectivity networks between the RPE and different choroid cell types. Moreover, the transcription factors and their target genes change during aging. The coding of somatic variations increases during aging in the human RPE and choroid at the single-cell level. Moreover, we identified ELN as a candidate for improving RPE degeneration and choroidal structure during aging. The mapping of the molecular architecture of the human RPE and choroid improves our understanding of the human vision support system and offers potential insights into the intervention targets for retinal diseases.
Science China. Life sciences
Huang, L;Li, R;Ye, L;Zhang, S;Tian, H;Du, M;Qu, C;Li, S;Li, J;Yang, M;Wu, B;Chen, R;Huang, G;Zhong, L;Yang, H;Yu, M;Shi, Y;Wang, C;Zhang, H;Chen, W;Yang, Z;
PMID: 36115892 | DOI: 10.1007/s11427-021-2163-1
The human retina serves as a light detector and signals transmission tissue. Advanced insights into retinal disease mechanisms and therapeutic strategies require a deep understanding of healthy retina molecular events. Here, we sequenced the mRNA of over 0.6 million single cells from human retinas across six regions at nine different ages. Sixty cell sub-types have been identified from the human mature retinas with unique markers. We revealed regional and age differences of gene expression profiles within the human retina. Cell-cell interaction analysis indicated a rich synaptic connection within the retinal cells. Gene expression regulon analysis revealed the specific expression of transcription factors and their regulated genes in human retina cell types. Some of the gene's expression, such as DKK3, are elevated in aged retinas. A further functional investigation suggested that over expression of DKK3 could impact mitochondrial stability. Overall, decoding the molecular dynamic architecture of the human retina improves our understanding of the vision system.