Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (406)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (11) Apply Lgr5 filter
  • Axin2 (7) Apply Axin2 filter
  • GCG (7) Apply GCG filter
  • egfp (6) Apply egfp filter
  • COL1A1 (6) Apply COL1A1 filter
  • PECAM1 (6) Apply PECAM1 filter
  • ACTA2 (5) Apply ACTA2 filter
  • Wnt4 (5) Apply Wnt4 filter
  • Sox9 (5) Apply Sox9 filter
  • CDKN1A (5) Apply CDKN1A filter
  • GLI1 (5) Apply GLI1 filter
  • SHH (5) Apply SHH filter
  • ACAN (5) Apply ACAN filter
  • Bmp4 (4) Apply Bmp4 filter
  • Rspo3 (4) Apply Rspo3 filter
  • MMP13 (4) Apply MMP13 filter
  • HBEGF (4) Apply HBEGF filter
  • Vegfa (4) Apply Vegfa filter
  • Spp1 (4) Apply Spp1 filter
  • Tgfb3 (4) Apply Tgfb3 filter
  • Epo (4) Apply Epo filter
  • Runx2 (4) Apply Runx2 filter
  • Ibsp (4) Apply Ibsp filter
  • VEGF (4) Apply VEGF filter
  • Cre (4) Apply Cre filter
  • OLFM4 (4) Apply OLFM4 filter
  • TGFB1 (3) Apply TGFB1 filter
  • Wnt10a (3) Apply Wnt10a filter
  • Wnt7a (3) Apply Wnt7a filter
  • Bglap (3) Apply Bglap filter
  • CFTR (3) Apply CFTR filter
  • Wnt5a (3) Apply Wnt5a filter
  • CTNNB1 (3) Apply CTNNB1 filter
  • Ptch1 (3) Apply Ptch1 filter
  • FSHR (3) Apply FSHR filter
  • GLP1R (3) Apply GLP1R filter
  • GUCA2A (3) Apply GUCA2A filter
  • GUCA2B (3) Apply GUCA2B filter
  • Sst (3) Apply Sst filter
  • Wnt9b (3) Apply Wnt9b filter
  • Bmp2 (3) Apply Bmp2 filter
  • Edar (3) Apply Edar filter
  • WNT2 (3) Apply WNT2 filter
  • PPY (3) Apply PPY filter
  • Fbn1 (3) Apply Fbn1 filter
  • Ghrl (3) Apply Ghrl filter
  • GFP (3) Apply GFP filter
  • Sftpc (3) Apply Sftpc filter
  • col10a1 (3) Apply col10a1 filter
  • Ins2 (3) Apply Ins2 filter

Product

  • RNAscope 2.5 HD Red assay (95) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (73) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.0 Assay (72) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (20) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 LS Assay (17) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (12) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 VS Assay (12) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent Assay (9) Apply RNAscope Multiplex Fluorescent Assay filter
  • BASEscope Assay RED (6) Apply BASEscope Assay RED filter
  • RNAscope (2) Apply RNAscope filter

Research area

  • (-) Remove Other filter Other (406)
  • Inflammation (2) Apply Inflammation filter
  • Vet path (2) Apply Vet path filter
  • Immunology (1) Apply Immunology filter
  • Signalling (1) Apply Signalling filter

Category

  • Publications (406) Apply Publications filter
Distribution of bile acid receptor TGR5 in the gastrointestinal tract of dogs.

Histol Histopathol. 2018 Jul 12:18025.

2018 Jul 12

Giaretta PR, Suchodolski JS, Blick AK, Steiner JM, Lidbury JA, Rech RR.
PMID: 29999170 | DOI: 10.14670/HH-18-025

Takeda-G-protein-receptor-5 (TGR5) is a receptor for bile acids and its expression has been described in a variety of tissues and species. Characterization of TGR5 distribution and function has been investigated in drug discovery for the treatment of metabolic diseases in humans. Because dogs are one of the species used in biomedical research and share some similarities with human gastrointestinal diseases, the objective of this study was to characterize the distribution of TGR5 receptor in the canine species. This study characterizes the distribution of TGR5 receptor in the gastrointestinal tract, liver, gallbladder, and pancreas of 8 dogs. The distribution of TGR5 antigen and mRNA expression was investigated using immunohistochemistry and RNA in situ hybridization, respectively. TGR5 immunolabeling was located in the cell membrane or in the cell membrane and cytoplasm. TGR5 immunolabeling was broadly distributed in macrophages, endothelial cells, ganglion cells, and leiomyocytes throughout all the examined tissues. Epithelial cells from tongue, stomach to rectum, as well as from gallbladder, biliary and pancreatic ducts demonstrated TGR5 immunolabeling. In endocrine cells, TGR5 immunolabeling was observed in intestinal enteroendocrine cells and islets of Langerhans in the pancreas. The hepatocytes had a unique pattern of immunolabeling located on the canalicular surface of the cell membrane. TGR5 mRNA expression was located mainly in the nucleus and the only negative cells throughout all examined tissues were striated muscle from tongue and esophagus, muscularis mucosae, esophageal glands, and hepatic sinusoids. These findings indicate that the bile acid receptor TGR5 is ubiquitously distributed in the canine gastrointestinal tract.
In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling.

Kidney Int.

2016 Jun 09

Ide N, Olauson H, Sato T, Densmore MJ, Wang H, Hanai JI, Larsson TE, Lanske B.
PMID: 27292223 | DOI: 10.1016/j.kint.2016.04.009

Klotho is a transmembrane protein expressed in the renal tubules where it acts as a permissive coreceptor for fibroblast growth factor 23 (FGF23). FGF23 signaling reduces the abundance of CYP27b1 and phosphate cotransporters NPT2a and NPT2c, leading to a decrease in 1,25(OH)2D3synthesis and a rise in urinary phosphate excretion, respectively. Systemic or whole-nephron deletion of Klotho in mice results in renal FGF23 resistance characterized by high 1,25(OH)2D3 and phosphate levels and premature aging. Expression of Klotho is highest in the distal tubules, whereas 25OH vitamin D 1α hydroxylation and phosphate reabsorption predominantly occur in the proximal tubules. Currently, the segment-specific roles of Klotho in renal tubules are not fully understood. Here we have generated mice with Klotho specifically ablated from the proximal tubules using 3 different Cre mouse strains. All 3 models displayed impaired urinary phosphate excretion and increased abundance of NPT2a in the brush border membrane. Notably, hyperphosphatemia in knockout mice was mild or nonexistent under basal conditions but occurred upon high phosphate loading, indicating the presence of compensatory mechanisms. Effects on 1,25(OH)2D3 varied between mouse strains but were modest overall. Thus, Klotho expressed in the proximal tubules has a defined but limited role in renal phosphate handling in vivo.

VEGF mRNA Assessment in Human Pterygium: A New 'Scope' for a Future Hope.

Ophthalmic Res. 2014 Oct 3;52(3):130-135.

Poenaru Sava MG, Raica ML, Cimpean AM.
PMID: 25300614

Purpose: The lack of powerful evidence to support the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in human pterygium can be attributed to incomplete VEGF expression assessment by restrictive use of immunohistochemistry only and failure to use the molecular methods able to confirm immunohistochemical findings. By adding at least one more sensitive method to assess human pterygium VEGF expression, a more accurate selection of patients for bevacizumab therapy could be done and this would improve the efficacy of anti-VEGF therapy in human pterygium. Methods: We assessed VEGF mRNA amplification on paraffin-embedded specimens by applying the RNAscope method for the first time in human pterygium, an in situ hybridization-based technique able to detect VEGF mRNA as a single gene copy on paraffin-embedded samples. Results: Heterogeneous VEGF mRNA distribution and amplification inside the epithelial compartment of human pterygium were observed. Despite previous reports concerning the immunohistochemical expression of VEGF in the human pterygium fibrovascular compartment, no stromal components were characterized by VEGF mRNA amplification assessed by in situ hybridization in our study. A higher amplification score was observed in epithelium from recurrent pterygium, especially located in the basal and suprabasal epithelial cells. Conclusions: Based on our findings we consider that in situ hybridization assessment of VEGF for human pterygium specimens can be a useful tool for reconsidering the selection of pterygium patients to be enrolled in anti-VEGF therapy. © 2014 S. Karger AG, Basel.
Interleukin-1β induced Stress Granules Sequester COX-2 mRNA and Regulates its Stability and Translation in Human OA Chondrocytes.

Sci Rep.

2016 Jun 08

Ansari MY, Haqqi TM.
PMID: 27271770 | DOI: 10.1038/srep27611.

Enhanced and immediate expression of cyclooxygenase-2 (COX-2) mRNA is observed in IL-1β-stimulated OA chondrocytes but the synthesis of protein found significantly delayed. Here we investigated the role of stress granules (SGs), ribonucleoprotein complexes that regulate mRNA translation, in the delayed translation of COX-2 mRNAs in IL-1β-stimulated OA chondrocytes. Stimulation of human chondrocytes with IL-1β activated the stress response genes and the phosphorylation of eIF2α that triggered the assembly of SGs. Using combined immunofluorescence staining of SGs markers and COX-2 protein, RNA fluorescence in situ hybridization and RNA immunoprecipitation, the COX-2 mRNAs were found sequestered in SGs in IL-1β-stimulated OA chondrocytes. No increase in COX-2 protein expression was observed during the persistence of SGs but enhanced expression of COX-2 protein was noted upon clearance of the SGs. Inhibition of SGs clearance blocked COX-2 mRNA translation whereas blocking the assembly of SGs by TIA-1 depletion resulted in rapid and increased production of COX-2 and PGE2. Our findings show for the first time assembly of SGs and sequestration of COX-2 mRNAs in human OA chondrocytes under pathological conditions. Post-transcriptional regulation of COX-2 mRNAs translation by SGs indicates a role in IL-1β-mediated catabolic response that could be therapeutically targeted in OA.

 
Distinct Requirements for Vacuolar Protein Sorting 34 Downstream Effector Phosphatidylinositol 3-Phosphate 5-Kinase in Podocytes Versus Proximal Tubular Cells.

J Am Soc Nephrol.

2017 Jan 29

Venkatareddy M, Verma R, Kalinowski A, Patel SR, Shisheva A, Garg P.
PMID: 26825532 | DOI: 10.1681/ASN.2015050555

The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34-deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubularcells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux.

Milk-fat globule epidermal growth factor 8 (MFGE8) is expressed at the embryo- and fetal- maternal interface in equine pregnancy.

Reprod Fertil Dev.

2017 Aug 30

Barua S, Macedo A, Kolb DS, Wynne-Edwards KE, Klein C.
PMID: 28850807 | DOI: 10.1071/RD17094

Milk-fat globule epidermal growth factor (EGF) 8 protein (MFGE8), also known as lactadherin, promotes cell adhesion in an Arg-Gly-Asp (RGD)-dependent modus via integrins. In the present study, the expression of MFGE8 was examined in equine endometrium during oestrus and at Days 12 and 16 after ovulation in pregnant and non-pregnant mares and in mares during the 5th month of gestation. Results demonstrated that MFGE8 is expressed at the embryo- and fetal-maternal interface in equine pregnancy. In non-pregnant endometrium its expression was upregulated by oestrogen, a finding that was confirmed using endometrial explant culture. MFGE8 was expressed at similar levels by conceptuses collected 13 and 14 days after ovulation and by allantochorion sampled during the 5th month of gestation. Pericytes of endometrial blood vessels displayed strong MFGE8 expression upon in situ hybridisation. During the 5th month of gestation, the fetal side of the allantochorionic villi in particular displayed pronounced staining upon in situ hybridisation, confirming that MFGE8 expression is not restricted to early pregnancy but persists and is present at the fetal-maternal interface. Potential roles of MFGE8 in equine pregnancy include mediating cell-cell adhesion, promotion of angiogenesis and placental transfer of fatty acids.

Microtubule-Associated Protein 1 Light Chain 3 (LC3) Isoforms in RPE and Retina.

Adv Exp Med Biol.

2018 May 01

Dhingra A, Alexander D, Reyes-Reveles J, Sharp R, Boesze-Battaglia K.
PMID: 29721994 | DOI: 10.1007/978-3-319-75402-4_74

Microtubule-associated protein 1 light chain 3 (MAP1LC3), a human homologue of yeast Atg8, is an essential component of autophagy. LC3 plays a critical role in hybrid degradation pathways in which some but not all components of autophagy are coupled with phagocytosis in a process known as LC3-associated phagocytosis (LAP). LC3 exists as three highly homologous isoforms in human (LC3A, LC3B, and LC3C) with two of these (LC3A and LC3B) in mouse. LC3B predominated in both fetal and adult human retinal pigment epithelium (RPE) relative to LC3A and LC3C, while in mouse RPE and neural retina, LC3A and LC3B were expressed at approximately equivalent levels. In situ hybridization studies localized LC3A and LC3B transcripts in the retina and RPE. LC3B protein was detected in C57Bl6/J RPE and retinal lysates and was absent in the LC3BKO mouse.

Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome.

J Clin Invest. 2019 Jan 7.

2019 Jan 07

MacFarlane EG, Parker SJ, Shin JY, Ziegler SG, Creamer TJ, Bagirzadeh R, Bedja D, Chen Y, Calderon JF, Weissler K, Frischmeyer-Guerrerio PA, Lindsay ME, Habashi JP, Dietz HC.
PMID: 30614814 | DOI: 10.1172/JCI123547

The aortic root is the predominant site for development of aneurysm caused by heterozygous loss-of-function mutations in positive effectors of the transforming growth factor-β (TGF-β) pathway. Using a mouse model of Loeys-Dietz syndrome (LDS) that carries a heterozygous kinase-inactivating mutation in TGF-β receptor I, we found that the effects of this mutation depend on the lineage of origin of vascular smooth muscle cells (VSMCs). Secondary heart field-derived (SHF-derived), but not neighboring cardiac neural crest-derived (CNC-derived), VSMCs showed impaired Smad2/3 activation in response to TGF-β, increased expression of angiotensin II (AngII) type 1 receptor (Agtr1a), enhanced responsiveness to AngII, and higher expression of TGF-β ligands. The preserved TGF-β signaling potential in CNC-derived VSMCs associated, in vivo, with increased Smad2/3 phosphorylation. CNC-, but not SHF-specific, deletion of Smad2 preserved aortic wall architecture and reduced aortic dilation in this mouse model of LDS. Taken together, these data suggest that aortic root aneurysm predisposition in this LDS mouse model depends both on defective Smad signaling in SHF-derived VSMCs and excessive Smad signaling in CNC-derived VSMCs. This work highlights the importance of considering the regional microenvironment and specifically lineage-dependent variation in the vulnerability to mutations in the development and testing of pathogenic models for aortic aneurysm.
Gonadotropin regulates NUCB2/nesfatin-1 expression in the mouse ovary and uterus.

Biochem Biophys Res Commun.

2019 Apr 10

Kim J, Sun S, Lee D, Youk H, Yang H.
PMID: 30981497 | DOI: 10.1016/j.bbrc.2019.04.008

NUCB2/nesfatin-1 is expressed in the hypothalamus and regulates food intake and energy metabolism. Recent studies showed that NUCB2/nesfatin-1 also plays a role in other organs. However, its expression pattern and function in female reproductive organs are unclear. Therefore, we investigated NUCB2/nesfatin-1 expression in the ovary and uterus of mice and determined whether it is regulated by gonadotropins and sex steroid hormones. NUCB2 mRNA and nesfatin-1 protein were detected in the ovary and uterus of mice. NUCB2/nesfatin-1 expression in both organs was highest in the estrus period of the estrus cycle. Administration of pregnant mare serum gonadotropin (PMSG) dose-dependently increased mRNA expression of NUCB2 in the ovary and uterus of mice. On the other hand, mRNA expression of NUCB2 in the uterus was dramatically decreased after ovariectomy and was not increased upon administration of PMSG. Injection of 17β-estradiol upregulated mRNA expression of NUCB2 in the uterus of ovariectomized mice, whereas injection of progesterone did not. These results suggest that NUCB2/nesfatin-1 expression in the ovary and uterus of mice is regulated through the hypothalamus-pituitary-ovary axis and that NUCB2/nesfatin-1 is a local regulator of ovarian steroidogenesis and uterine function.

X-inactivation normalizes O-GlcNAc Transferase levels and generates an O-GlcNAc-depleted Barr body

Frontiers in Genetics 5 (2014): 256

Olivier-van_stichelen, S, J. A. Hanover
PMID: 10.3389/fgene.2014.00256

O-GlcNAc Transferase (OGT) catalyzes protein O-GlcNAcylation, an abundant and dynamic nuclear and cytosolic modification linked to epigenetic regulation of gene expression. The steady-state levels of O-GlcNAc are influenced by extracellular glucose concentrations suggesting that O-GlcNAcylation may serve as a metabolic sensor. Intriguingly, human OGT is located on the X-chromosome (Xq13) close to the X-inactivation center (XIC), suggesting that OGT levels may be controlled by dosage compensation. In human female cells, dosage compensation is accomplished by X-inactivation. Long noncoding RNAs and polycomb repression act together to produce an inactive X chromosome, or Barr body. Given that OGT has an established role in polycomb repression, it is uniquely poised to auto-regulate its own expression through X-inactivation. In this study, we examined OGT expression in male, female and triple-X female human fibroblasts, which differ in the number of inactive X chromosomes (Xi). We demonstrate that OGT is subjected to random X-inactivation in normal female and triple X cells to regulate OGT RNA levels. In addition, we used Chromosome isolation by RNA purification (ChIRP) and immunolocalization to examine O-GlcNAc levels in the Xi/Barr body. Despite the established role of O-GlcNAc in polycomb repression, OGT and target proteins bearing O-GlcNAc are largely depleted from the highly condensed Barr body. Thus, while O-GlcNAc is abundantly present elsewhere in the nucleus, its absence from the Barr body suggests that the transcriptional quiescence of the Xi does not require OGT or O-GlcNAc.
A RNAscope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mRNA

Cell Tissue Res.

2018 Jul 05

Kersigo J, Pan N, Lederman JD, Chatterjee S, Abel T, Pavlinkova G, Silos-Santiago I, Fritzsch B.
PMID: 29974252 | DOI: 10.1007/s00441-018-2864-4

RNAscope™ technology provided by Advanced Cell Diagnostics (ACD) allows the detection and evaluation of coinciding mRNA expression profiles in the same or adjacent cells in unprecedented quantitative detail using multicolor fluorescent in situ hybridization (FISH). While already extensively used in thinly sectioned material of various pathological tissues and, to a lesser extent, in some whole mounts, we provide here a detailed approach to use the fluorescent RNAscope method in the mouse inner ear and thick brain sections by modifying and adapting existing techniques of whole mount fluorescent in situ hybridization (WH-FISH). We show that RNAscope WH-FISH can be used to quantify local variation in overlaying mRNA expression intensity, such as neurotrophin receptors along the length of the mouse cochlea. We also show how RNAscope WH-FISH can be combined with immunofluorescence (IF) of some epitopes that remain after proteinase digestion and, to some extent, with fluorescent protein markers such as tdTomato. Our WH-FISH technique provides an approach to detect cell-specific quantitative differences in developing and mature adjacent cells, an emerging issue revealed by improved cellular expression profiling. Further, the presented technique may be useful in validating single-cell RNAseq data on expression profiles in a range of tissue known or suspected to have locally variable mRNA expression levels.

IL-17A is Elevated in End-stage COPD and Contributes to Cigarette Smoke-induced Lymphoid Neogenesis

Am J Respir Crit Care Med. 2015 Apr 6.

Roos AB, Sandén C, Mori M, Bjermer L, Stampfli MR, Erjefält JS.
PMID: 25844618

Abstract RATIONALE: End-stage chronic obstructive pulmonary disease (COPD) is associated with an accumulation of pulmonary lymphoid follicles. Interleukin (IL)-17A is implicated in COPD and pulmonary lymphoid neogenesis in response to microbial stimuli. We hypothesized that IL-17A is increased in peripheral lung tissue during end-stage COPD and also directly contributes to cigarette smoke-induced lymphoid neogenesis. OBJECTIVE: Characterize the tissue expression and functional role of IL-17A in end-stage COPD. METHODS: Automated immune-detection of IL-17A and IL-17F was performed in lung tissue specimens collected from patients with GOLD stage I-IV COPD, as well as smoking and never-smoking controls. In parallel, Il17a-/- mice and WT controls were exposed to cigarette smoke for 24 weeks and pulmonary lymphoid neogenesis was assessed. MEASUREMENTS AND MAIN RESULTS: Tissue expression of IL-17A and IL-17F was increased in COPD and correlated with lung function decline. IL-17A was significantly elevated in severe-very severe COPD (GOLD III/IV), compared to both smokers and never-smokers without COPD. While CD3+ T cells expressed IL-17A in very severe COPD, the majority of IL-17A+ cells were identified as tryptase+ mast cells. Attenuated lymphoid neogenesis and reduced expression of the B cell attracting chemokine C-X-C motif ligand (CXCL)12 was observed in cigarette smoke-exposed Il17a-/- mice. CXCL12 was also highly expressed in lymphoid follicles in COPD lungs, and the pulmonary expression was significantly elevated in end-stage COPD. CONCLUSION: IL-17A in the peripheral lung of patients with severe-very severe COPD may contribute to disease progression and development of lymphoid follicles via activation of CXCL12.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?