Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (8)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (11) Apply Lgr5 filter
  • Axin2 (7) Apply Axin2 filter
  • GCG (7) Apply GCG filter
  • egfp (6) Apply egfp filter
  • COL1A1 (6) Apply COL1A1 filter
  • PECAM1 (6) Apply PECAM1 filter
  • ACTA2 (5) Apply ACTA2 filter
  • Wnt4 (5) Apply Wnt4 filter
  • Sox9 (5) Apply Sox9 filter
  • CDKN1A (5) Apply CDKN1A filter
  • GLI1 (5) Apply GLI1 filter
  • SHH (5) Apply SHH filter
  • ACAN (5) Apply ACAN filter
  • Bmp4 (4) Apply Bmp4 filter
  • (-) Remove Rspo3 filter Rspo3 (4)
  • MMP13 (4) Apply MMP13 filter
  • (-) Remove HBEGF filter HBEGF (4)
  • Vegfa (4) Apply Vegfa filter
  • Spp1 (4) Apply Spp1 filter
  • Tgfb3 (4) Apply Tgfb3 filter
  • Epo (4) Apply Epo filter
  • Runx2 (4) Apply Runx2 filter
  • Ibsp (4) Apply Ibsp filter
  • VEGF (4) Apply VEGF filter
  • Cre (4) Apply Cre filter
  • OLFM4 (4) Apply OLFM4 filter
  • TGFB1 (3) Apply TGFB1 filter
  • Wnt10a (3) Apply Wnt10a filter
  • Wnt7a (3) Apply Wnt7a filter
  • Bglap (3) Apply Bglap filter
  • CFTR (3) Apply CFTR filter
  • Wnt5a (3) Apply Wnt5a filter
  • CTNNB1 (3) Apply CTNNB1 filter
  • Ptch1 (3) Apply Ptch1 filter
  • FSHR (3) Apply FSHR filter
  • GLP1R (3) Apply GLP1R filter
  • GUCA2A (3) Apply GUCA2A filter
  • GUCA2B (3) Apply GUCA2B filter
  • Sst (3) Apply Sst filter
  • Wnt9b (3) Apply Wnt9b filter
  • Bmp2 (3) Apply Bmp2 filter
  • Edar (3) Apply Edar filter
  • WNT2 (3) Apply WNT2 filter
  • PPY (3) Apply PPY filter
  • Fbn1 (3) Apply Fbn1 filter
  • Ghrl (3) Apply Ghrl filter
  • GFP (3) Apply GFP filter
  • Sftpc (3) Apply Sftpc filter
  • col10a1 (3) Apply col10a1 filter
  • Ins2 (3) Apply Ins2 filter

Product

  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter

Research area

  • (-) Remove Other filter Other (8)

Category

  • Publications (8) Apply Publications filter
Acquisition of WNT Pathway Gene Alterations Coincides With the Transition From Precursor Polyps to Traditional Serrated Adenomas.

Am J Surg Pathol.

2018 Aug 31

Hashimoto T, Ogawa R, Yoshida H, Taniguchi H, Kojima M, Saito Y, Sekine S.
PMID: 30179900 | DOI: 10.1097/PAS.0000000000001149

Colorectal traditional serrated adenomas (TSAs) are often associated with precursor polyps, including hyperplastic polyps and sessile serrated adenoma/polyps. To elucidate the molecular mechanisms involved in the progression from precursor polyps to TSAs, the present study analyzed 15 precursor polyp-associated TSAs harboring WNT pathway gene mutations. Laser microdissection-based sequencing analysis showed that BRAF or KRAS mutations were shared between TSA and precursor polyps in all lesions. In contrast, the statuses of WNT pathway gene mutations were different between the 2 components. In 8 lesions, RNF43, APC, or CTNNB1 mutations, were exclusively present in TSA. RNF43 mutations were shared between the TSA and precursor components in 3 lesions; however, they were heterozygous in the precursor polyps whereas homozygous in the TSA. In 4 lesions with PTPRK-RSPO3 fusions, RNA in situ hybridization demonstrated that overexpression of RSPO3, reflecting PTPRK-RSPO3 fusion transcripts, was restricted to TSA components. Consistent with the results of the genetic and in situ hybridization analyses, nuclear β-catenin accumulation and MYC overexpression were restricted to the TSA component in 13 and 12 lesions, respectively. These findings indicate that the WNT pathway gene alterations are acquired during the progression from the precursor polyps to TSAs and that the activation of the WNT pathway plays a critical role in the development of TSA rather than their progression to high-grade lesions.

FOXO1 regulates uterine epithelial integrity and progesterone receptor expression critical for embryo implantation.

PLoS Genet.

2018 Nov 19

Vasquez YM, Wang X, Wetendorf M, Franco HL, Mo Q, Wang T, Lanz RB, Young SL, Lessey BA, Spencer TE, Lydon JP, DeMayo FJ.
PMID: 30452456 | DOI: 10.1371/journal.pgen.1007787

Successful embryo implantation requires a receptive endometrium. Poor uterine receptivity can account for implantation failure in women who experience recurrent pregnancy loss or multiple rounds of unsuccessful in vitro fertilization cycles. Here, we demonstrate that the transcription factor Forkhead Box O1 (FOXO1) is a critical regulator of endometrial receptivity in vivo. Uterine ablation of Foxo1 using the progesterone receptor Cre (PgrCre) mouse model resulted in infertility due to altered epithelial cell polarity and apoptosis, preventing the embryo from penetrating the luminal epithelium. Analysis of the uterine transcriptome after Foxo1 ablation identified alterations in gene expression for transcripts involved in the activation of cell invasion, molecular transport, apoptosis, β-catenin (CTNNB1) signaling pathway, and an increase in PGR signaling. The increase of PGR signaling was due to PGR expression being retained in the uterine epithelium during the window of receptivity. Constitutive expression of epithelial PGR during this receptive period inhibited expression of FOXO1 in the nucleus of the uterine epithelium. The reciprocal expression of PGR and FOXO1 was conserved in human endometrial samples during the proliferative and secretory phase. This demonstrates that expression of FOXO1 and the loss of PGR during the window of receptivity are interrelated and critical for embryo implantation.

Differential activity of 2-methylene-19-nor vitamin D analogs on growth factor gene expression in rhino mouse skin and comparison to all-trans retinoic acid

PLoS One.

2017 Nov 28

Ahrens JM, Jones JD, Nieves NJ, Mitzey AM, DeLuca HF, Clagett-Dame M.
PMID: 29182680 | DOI: 10.1371/journal.pone.0188887

While all 2-methylene-19-nor analogs of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) tested produce an increase in epidermal thickness in the rhino mouse, only a subset reduce utricle size (comedolysis). All-trans retinoic acid (atRA) also causes epidermal thickening and a reduction in utricle size in the rhino mouse. We now report that 2-methylene-19-nor-(20S)-1α-hydroxybishomopregnacalciferol (2MbisP), a comedolytic analog, increases epidermal thickening more rapidly than does atRA, while both reduce utricle area at an equal rate. Whereas unlike atRA, 2MbisP does not alter the epidermal growth factor receptor ligand, heparin-binding epidermal growth factor-like growth factor, it does increase the expression of both amphiregulin and epigen mRNA, even after a single dose. In situ hybridization reveals an increase in these transcripts throughout the closing utricle as well as in the interfollicular epidermis. The mRNAs for other EGFR ligands including betacellulin and transforming growth factor-α, as well as the epidermal growth factor receptor are largely unaffected by 2MbisP. Another analog, 2-methylene-19-nor-(20S)-26,27-dimethylene-1α,25-dihydroxyvitamin D3 (CAGE-3), produces epidermal thickening but fails to reduce utricle size or increase AREG mRNA levels. CAGE-3 modestly increases epigen mRNA levels, but only after 5 days of dosing. Thus, 2-MbisP produces unique changes in epidermal growth factor receptor ligand mRNAs that may be responsible for both epidermal proliferation and a reduction in utricle size.

Autotaxin–lysophosphatidic acid–LPA3 signaling at the embryo‐epithelial boundary controls decidualization pathways

EMBO J.

2017 Jun 06

Aikawa S, Kano K, Inoue A, Wang J, Saigusa D, Nagamatsu T, Hirota Y, Fujii T, Tsuchiya S, Taketomi Y, Sugimoto Y, Murakami M, Arita M, Kurano M, Ikeda H, Yatomi Y, Chun J, Aoki J.
PMID: 28588064 | DOI: 10.15252/embj.201696290

During pregnancy, up-regulation of heparin-binding (HB-) EGF and cyclooxygenase-2 (COX-2) in the uterine epithelium contributes to decidualization, a series of uterine morphological changes required for placental formation and fetal development. Here, we report a key role for the lipid mediator lysophosphatidic acid (LPA) in decidualization, acting through its G-protein-coupled receptor LPA3 in the uterine epithelium. Knockout of Lpar3 or inhibition of the LPA-producing enzyme autotaxin (ATX) in pregnant mice leads to HB-EGF and COX-2 down-regulation near embryos and attenuates decidual reactions. Conversely, selective pharmacological activation of LPA3 induces decidualization via up-regulation of HB-EGF and COX-2. ATX and its substrate lysophosphatidylcholine can be detected in the uterine epithelium and in pre-implantation-stage embryos, respectively. Our results indicate that ATX-LPA-LPA3 signaling at the embryo-epithelial boundary induces decidualization via the canonical HB-EGF and COX-2 pathways.

Myocardial-specific R-spondin3 drives proliferation of the coronary stems primarily through the Leucine Rich Repeat G Protein coupled receptor LGR4.

Dev Biol.

2018 May 31

Da Silva F, Massa F, Motamedi FJ, Vidal V, Rocha AS, Gregoire EP, Cai CL, Wagner KD, Schedl A.
PMID: 29859889 | DOI: 10.1016/j.ydbio.2018.05.024

Coronary artery anomalies are common congenital disorders with serious consequences in adult life. Coronary circulation begins when the coronary stems form connections between the aorta and the developing vascular plexus. We recently identified the WNT signaling modulator R-spondin 3 (Rspo3), as a crucial regulator of coronary stem proliferation. Using expression analysis and tissue-specific deletion we now demonstrate that Rspo3 is primarily produced by cardiomyocytes. Moreover, we have employed CRISPR/Cas9 technology to generate novel Lgr4-null alleles that showed a significant decrease in coronary stem proliferation and thus phenocopied the coronary artery defects seen in Rspo3 mutants. Interestingly, Lgr4 mutants displayed slightly hypomorphic right ventricles, an observation also made after myocardial specific deletion of Rspo3. These results shed new light on the role of Rspo3 in heart development and demonstrate that LGR4 is the principal R-spondin 3 receptor in the heart.

Single-cell transcriptome analysis identifies distinct cell types and niche signaling in a primary gastric organoid model.

Scientific Reports

2019 Mar 14

Chen J, Lau BT, Andor N, Grimes SM, Handy C, Wood-Bouwens C, Ji HP.
PMID: - | DOI: 10.1038/s41598-019-40809-x

The diverse cellular milieu of the gastric tissue microenvironment plays a critical role in normal tissue homeostasis and tumor development. However, few cell culture model can recapitulate the tissue microenvironment and intercellular signaling in vitro. We used a primary tissue culture system to generate a murine p53 null gastric tissue model containing both epithelium and mesenchymal stroma. To characterize the microenvironment and niche signaling, we used single cell RNA sequencing (scRNA-Seq) to determine the transcriptomes of 4,391 individual cells. Based on specific markers, we identified epithelial cells, fibroblasts and macrophages in initial tissue explants during organoid formation. The majority of macrophages were polarized towards wound healing and tumor promotion M2-type. During the course of time, the organoids maintained both epithelial and fibroblast lineages with the features of immature mouse gastric stomach. We detected a subset of cells in both lineages expressing Lgr5, one of the stem cell markers. We examined the lineage-specific Wnt signaling activation, and identified that Rspo3 was specifically expressed in the fibroblast lineage, providing an endogenous source of the R-spondin to activate Wnt signaling. Our studies demonstrate that this primary tissue culture system enables one to study gastric tissue niche signaling and immune response in vitro.

Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success

Nat. Commun.

2018 Jun 22

Kelleher Am, Milano-Foster J, Behura SK, Spencer TE.
PMID: - | DOI: 10.1038/s41467-018-04848-8

Uterine glands are essential for pregnancy establishment. By employing forkhead box A2 (FOXA2)-deficient mouse models coupled with leukemia inhibitory factor (LIF) repletion, we reveal definitive roles of uterine glands in embryo implantation and stromal cell decidualization. Here we report that LIF from the uterine glands initiates embryo-uterine communication, leading to embryo attachment and stromal cell decidualization. Detailed histological and molecular analyses discovered that implantation crypt formation does not involve uterine glands, but removal of the luminal epithelium is delayed and subsequent decidualization fails in LIF-replaced glandless but not gland-containing FOXA2-deficient mice. Adverse ripple effects of those dysregulated events in the glandless uterus result in embryo resorption and pregnancy failure. These studies provide evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success.

Inflammatory Cytokine TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture.

Cell

2018 Nov 29

Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Álvarez-Varela A, Wu P, Jin Y, Zhu J, Li B, Grompe M, Wang B, Nusse R.
PMID: - | DOI: 10.1016/j.cell.2018.11.012

In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah −/− mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?