Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (10)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Lgr5 (11) Apply Lgr5 filter
  • Axin2 (7) Apply Axin2 filter
  • (-) Remove GCG filter GCG (7)
  • egfp (6) Apply egfp filter
  • COL1A1 (6) Apply COL1A1 filter
  • PECAM1 (6) Apply PECAM1 filter
  • ACTA2 (5) Apply ACTA2 filter
  • Wnt4 (5) Apply Wnt4 filter
  • Sox9 (5) Apply Sox9 filter
  • CDKN1A (5) Apply CDKN1A filter
  • GLI1 (5) Apply GLI1 filter
  • SHH (5) Apply SHH filter
  • ACAN (5) Apply ACAN filter
  • Bmp4 (4) Apply Bmp4 filter
  • Rspo3 (4) Apply Rspo3 filter
  • MMP13 (4) Apply MMP13 filter
  • HBEGF (4) Apply HBEGF filter
  • Vegfa (4) Apply Vegfa filter
  • Spp1 (4) Apply Spp1 filter
  • Tgfb3 (4) Apply Tgfb3 filter
  • Epo (4) Apply Epo filter
  • Runx2 (4) Apply Runx2 filter
  • Ibsp (4) Apply Ibsp filter
  • VEGF (4) Apply VEGF filter
  • Cre (4) Apply Cre filter
  • OLFM4 (4) Apply OLFM4 filter
  • TGFB1 (3) Apply TGFB1 filter
  • Wnt10a (3) Apply Wnt10a filter
  • Wnt7a (3) Apply Wnt7a filter
  • Bglap (3) Apply Bglap filter
  • CFTR (3) Apply CFTR filter
  • Wnt5a (3) Apply Wnt5a filter
  • CTNNB1 (3) Apply CTNNB1 filter
  • Ptch1 (3) Apply Ptch1 filter
  • FSHR (3) Apply FSHR filter
  • (-) Remove GLP1R filter GLP1R (3)
  • GUCA2A (3) Apply GUCA2A filter
  • GUCA2B (3) Apply GUCA2B filter
  • Sst (3) Apply Sst filter
  • Wnt9b (3) Apply Wnt9b filter
  • Bmp2 (3) Apply Bmp2 filter
  • Edar (3) Apply Edar filter
  • WNT2 (3) Apply WNT2 filter
  • PPY (3) Apply PPY filter
  • Fbn1 (3) Apply Fbn1 filter
  • Ghrl (3) Apply Ghrl filter
  • GFP (3) Apply GFP filter
  • Sftpc (3) Apply Sftpc filter
  • col10a1 (3) Apply col10a1 filter
  • Ins2 (3) Apply Ins2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (5) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter

Research area

  • (-) Remove Other filter Other (10)

Category

  • Publications (10) Apply Publications filter
Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors.

Physiol Rep.

2017 Dec 12

Ronn J, Jensen EP, Wewer Albrechtsen NJ, Holst JJ, Sorensen CM.
PMID: 29233907 | DOI: 10.14814/phy2.13503

Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor.

Profiling of G Protein-Coupled Receptors in Vagal Afferents Reveals Novel Gut-to-Brain Sensing Mechanisms

Molecular Metabolism

2018 Apr 03

Egerod KL, Petersen N ,Timshel PN, Rekling JC, Wang Y, Liu Q, Schwartz TW, Gautron L.
PMID: - | DOI: 10.1016/j.molmet.2018.03.016

Abstract

Objectives

G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagalafferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract.

Methods

Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situhybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Nav1.8-expressing afferents.

Results

GPCRs for gut hormones that were the most enriched in Nav1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Nav1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Nav1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents.

Conclusion

Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication.

Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity.

Proc Natl Acad Sci U S A.

2018 Jul 23

Kleiner S, Gomez D, Megra B, Na E, Bhavsar R, Cavino K, Xin Y, Rojas J, Dominguez-Gutierrez G, Zambrowicz B, Carrat G, Chabosseau P, Hu M, Murphy AJ, Yancopoulos GD, Rutter GA, Gromada J.
PMID: 30038024 | DOI: 10.1073/pnas.1721418115

SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In β-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic β-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced β-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of β-cells to secrete insulin under hyperglycemic conditions.

The Hypothalamic Glucagon-Like Peptide-1 (GLP-1) Receptor (GLP-1R) is Sufficient but Not Necessary for the Regulation of Energy Balance and Glucose Homeostasis in Mice

Diabetes.

2016 Dec 01

Burmeister MA, Ayala JE, Smouse H, Landivar-Rocha A, Brown JD, Drucker DJ, Stoffers DA, Sandoval DA, Seeley RJ, Ayala JE.
PMID: 27908915 | DOI: 10.2337/db16-1102

Pharmacological activation of the hypothalamic glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) promotes weight loss and improves glucose tolerance. This demonstrates that the hypothalamic GLP-1R is sufficient but does not show whether it is necessary for the effects of exogenous GLP-1R agonists (GLP-1RA) or endogenous GLP-1 on these parameters. To address this, we crossed mice harboring floxed Glp1r alleles to mice expressing Nkx2.1-Cre to knock down Glp1r expression throughout the hypothalamus (GLP-1RKDΔNkx2.1cre). We also generated mice lacking Glp1r expression specifically in two GLP-1RA-responsive hypothalamic feeding nuclei/cell types, the paraventricular nucleus (GLP-1RKDΔSim1cre) and proopiomelanocortin neurons (GLP-1RKDΔPOMCcre). Chow -fed GLP-1RKDΔNkx2.1cre mice exhibited increased food intake and energy expenditure with no net effect on body weight. When fed a high fat diet (HFD), these mice exhibited normal food intake but elevated energy expenditure, yielding reduced weight gain. None of these phenotypes were observed in GLP-1RKDΔSim1creand GLP-1RKDΔPOMCcre mice. The acute anorectic and glucose tolerance effects of peripherally-dosed GLP-1RA exendin-4 and liraglutide were preserved in all mouse lines. Chronic liraglutide treatment reduced body weight in chow-fed GLP-1RKDΔNkx2.1cre mice, but this effect was attenuated upon HFD feeding. In sum, classical homeostatic control regions are sufficient but not individually necessary for the effects of GLP-1RA on nutrient homeostasis.

Gene Signature of the Human Pancreatic ε-Cell.

Endocrinology. 2018 Oct 30.

2018 Oct 30

Dominguez Gutierrez G, Kim J, Lee AH, Tong J, Niu J, Gray S, Wei Y, Ding Y, Ni M, Adler C, Murphy AJ, Gromada J, Xin Y.
PMID: 30380031 | DOI: 10.1210/en.2018-00833

The ghrelin producing ε-cell represents the fifth endocrine cell type in human pancreatic islets. The abundance of ε-cells in adult pancreas is extremely low, which has hampered the investigation on the molecular pathways regulating the development and the function of this cell type. In this study, we explored the molecular features defining the function of pancreatic ε-cells isolated from adult non-diabetic donors using single-cell RNA sequencing technology. We focus on transcription factors, cell surface receptors and genes involved in metabolic pathways that contribute to regulation of cellular function. Furthermore, the genes that separate ε-cells from the other islet endocrine cell types are presented. This study expands prior knowledge about the genes important for the function of the ε-cell during development and provides a resource to interrogate the transcriptome of this rare human islet cell type.
Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells.

Proc Natl Acad Sci U S A.

2016 Mar 07

Xin Y, Kim J, Ni M, Wei Y, Okamoto H, Lee J, Adler C, Cavino K, Murphy AJ, Yancopoulos GD, Lin HC, Gromada J.
PMID: 26951663 | DOI: -

This study provides an assessment of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. The system combines microfluidic technology and nanoliter-scale reactions. We sequenced 622 cells, allowing identification of 341 islet cells with high-quality gene expression profiles. The cells clustered into populations of α-cells (5%), β-cells (92%), δ-cells (1%), and pancreatic polypeptide cells (2%). We identified cell-type-specific transcription factors and pathways primarily involved in nutrient sensing and oxidation and cell signaling. Unexpectedly, 281 cells had to be removed from the analysis due to low viability, low sequencing quality, or contamination resulting in the detection of more than one islet hormone. Collectively, we provide a resource for identification of high-quality gene expression datasets to help expand insights into genes and pathways characterizing islet cell types. We reveal limitations in the C1 Fluidigm cell capture process resulting in contaminated cells with altered gene expression patterns. This calls for caution when interpreting single-cell transcriptomics data using the C1 Fluidigm system.

A single-cell survey of the small intestinal epithelium.

Nature.

2017 Nov 16

Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett WS, Rozenblatt-Rosen O, Shi HN, Yilmaz O, Xavier RJ, Regev A.
PMID: 29144463 | DOI: 10.1038/nature24489

Intestinal epithelial cells absorb nutrients, respond to microbes, function as a barrier and help to coordinate immune responses. Here we report profiling of 53,193 individual epithelial cells from the small intestine and organoids of mice, which enabled the identification and characterization of previously unknown subtypes of intestinal epithelial cell and their gene signatures. We found unexpected diversity in hormone-secreting enteroendocrine cells and constructed the taxonomy of newly identified subtypes, and distinguished between two subtypes of tuft cell, one of which expresses the epithelial cytokine Tslp and the pan-immune marker CD45, which was not previously associated with non-haematopoietic cells. We also characterized the ways in which cell-intrinsic states and the proportions of different cell types respond to bacterial and helminth infections: Salmonella infection caused an increase in the abundance of Paneth cells and enterocytes, and broad activation of an antimicrobial program; Heligmosomoides polygyrus caused an increase in the abundance of goblet and tuft cells. Our survey highlights previously unidentified markers and programs, associates sensory molecules with cell types, and uncovers principles of gut homeostasis and response to pathogens.

Lineage dynamics of murine pancreatic development at single-cell resolution.

Nat Commun.

2018 Sep 25

Byrnes LE, Wong DM, Subramaniam M, Meyer NP, Gilchrist CL, Knox SM, Tward AD, Ye CJ, Sneddon JB.
PMID: 30254276 | DOI: 10.1038/s41467-018-06176-3

Organogenesis requires the complex interactions of multiple cell lineages that coordinate their expansion, differentiation, and maturation over time. Here, we profile the cell types within the epithelial and mesenchymal compartments of the murine pancreas across developmental time using a combination of single-cell RNA sequencing, immunofluorescence, in situ hybridization, and genetic lineage tracing. We identify previously underappreciated cellular heterogeneity of the developing mesenchyme and reconstruct potential lineage relationships among the pancreatic mesothelium and mesenchymal cell types. Within the epithelium, we find a previously undescribed endocrine progenitor population, as well as an analogous population in both human fetal tissue and human embryonic stem cells differentiating toward a pancreatic beta cell fate. Further, we identify candidate transcriptional regulators along the differentiation trajectory of this population toward the alpha or beta cell lineages. This work establishes a roadmap of pancreatic development and demonstrates the broad utility of this approach for understanding lineage dynamics in developing organs.

The Microbiota-Produced N-Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance.

Diabetes

2019 Apr 22

Wollam J, Riopel M, Xu YJ, Johnson AMF, Ofrecio JM, Ying W, El Ouarrat D, Chan LS, Han AW, Mahmood NA, Ryan CN, Lee YS, Watrous JD, Chordia MD, Pan D, Jain M, Olefsky JM.
PMID: 31010956 | DOI: 10.2337/db18-1307

The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)-induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon-like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. Overall, we describe a new mechanism by which the gut microbiota can modulate glucose metabolism, providing a potential approach for treatment of metabolic disease.

Increased SLC38A4 Amino Acid Transporter Expression in Human Pancreatic α-Cells Following Glucagon Receptor Inhibition

Endocrinology

2019 Mar 11

Kim J, Dominguez Gutierrez G, Xin Y, Cavino K, Sung B, Sipos B, Kloeppel G, Gromada J and Okamoto H
| DOI: 10.1210/en.2019-00022

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?