ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Clin Invest. 2019 Jan 7.
2019 Jan 07
MacFarlane EG, Parker SJ, Shin JY, Ziegler SG, Creamer TJ, Bagirzadeh R, Bedja D, Chen Y, Calderon JF, Weissler K, Frischmeyer-Guerrerio PA, Lindsay ME, Habashi JP, Dietz HC.
PMID: 30614814 | DOI: 10.1172/JCI123547
Pflugers Arch.
2016 May 25
Gerl K, Nolan KA, Karger C, Fuchs M, Wenger RH, Stolt CC, Willam C, Kurtz A, Kurt B.
PMID: 27220347 | DOI: -
PDGFR-β-expressing cells of the kidneys are considered as a relevant site of erythropoietin (EPO) production. The origin of these cells, their contribution to renal EPO production, and if PDGFR-β-positive cells in other organs are also capable to express EPO are less clear. We addressed these questions in mice, in which hypoxia-inducible transcription factors were stabilized in PDGFR-β+ cells by inducible deletion of the von Hippel-Lindau (Vhl) protein. Vhl deletion led to a 600-fold increase of plasma EPO concentration, 170-fold increase of renal EPO messenger RNA (mRNA) levels, and an increase of hematocrit values up to 70 %. Intrarenal localization of EPO-expressing cells coincided with the zonal heterogeneity and distribution of cells expressing PDGFR-β. Amongst a variety of extrarenal organs only adrenal glands showed significant EPO mRNA expression after Vhl deletion in PDGFR-β+ cells. EPO mRNA, plasma EPO, and hematocrit fell to subnormal values if HIF-2α, but not HIF-1α, was deleted either alone or in combination with Vhl in PDGFR-β+ cells. Treatment of mice with a prolyl-hydroxylase inhibitor caused an increase of EPO mRNA abundance and plasma EPO concentrations in wild-type mice and in mice lacking HIF-1α in PDGFR-β+ cells but exerted no effect in mice lacking HIF-2α in PDGFR-β+ cells. These findings suggest that PDGFR-β+ cells are the only relevant site of EPO expression in the kidney and that HIF-2 is the essential transcription factor triggering EPO expression therein. Moreover, our findings suggest that PDGFR-β+cells elaborating EPO might arise from the metanephric mesenchyme, rather than from the neural crest.
Nat Commun. 2018 Nov 30;9(1):5083.
2018 Nov 30
Pinho AV, Van Bulck M, Chantrill L, Arshi M, Sklyarova T, Herrmann D, Vennin C, Gallego-Ortega D, Mawson A, Giry-Laterriere M, Magenau A, Leuckx G, Baeyens L, Gill AJ, Phillips P, Timpson P, Biankin AV, Wu J, Rooman I.
PMID: 30504844 | DOI: 10.1038/s41467-018-07497-z
Kidney International
2018 Nov 27
Imeri F, Nolan KA, Bapst AM, Santambrogio S, Abreu-Rodríguez I, Spielmann P, Pfundstein S, Libertini S, Crowther L, Orlando IMC, Dahl SL, Keodara A, Kuo W, Kurtcuoglu V, Scholz CC, Qi W, Hummler E, Hoogewijs D, Wenger RH.
PMID: - | DOI: 10.1016/j.kint.2018.08.043
Erythropoietin (Epo) is essential for erythropoiesis and is mainly produced by the fetal liver and the adult kidney following hypoxic stimulation. Epo regulation is commonly studied in hepatoma cell lines, but differences in Epo regulation between kidney and liver limit the understanding of Epo dysregulation in polycythaemia and anaemia. To overcome this limitation, we have generated a novel transgenic mouse model expressing Cre recombinase specifically in the active fraction of renal Epo-producing (REP) cells. Crossing with reporter mice confirmed the inducible and highly specific tagging of REP cells, located in the corticomedullary border region where there is a steep drop in oxygen bioavailability. A novel method was developed to selectively grow primary REP cells in culture and to generate immortalized clonal cell lines, called fibroblastoid atypical interstitial kidney (FAIK) cells. FAIK cells show very early hypoxia-inducible factor (HIF)-2α induction, which precedes Epo transcription. Epo induction in FAIK cells reverses rapidly despite ongoing hypoxia, suggesting a cell autonomous feedback mechanism. In contrast, HIF stabilizing drugs resulted in chronic Epo induction in FAIK cells. RNA sequencing of three FAIK cell lines derived from independent kidneys revealed a high degree of overlap and suggests that REP cells represent a unique cell type with properties of pericytes, fibroblasts, and neurons, known as telocytes. These novel cell lines may be helpful to investigate myofibroblastdifferentiation in chronic kidney disease and to elucidate the molecular mechanisms of HIF stabilizing drugs currently in phase III studies to treat anemia in end-stage kidney disease.
Kidney Int.
2018 Sep 21
Suzuki N, Matsuo-Tezuka Y, Sasaki Y, Sato K, Miyauchi K, Kato K, Saito S, Shimonaka Y, Hirata M, Yamamoto M.
PMID: 30245128 | DOI: 10.1016/j.kint.2018.06.028
Iron is an essential mineral for oxygen delivery and for a variety of enzymatic activities, but excessive iron results in oxidative cytotoxicity. Because iron is primarily used in red blood cells, defective erythropoiesis caused by loss of the erythroid growth factor erythropoietin (Epo) elevates iron storage levels in serum and tissues. Here, we investigated the effects of iron in a mouse model of Epo-deficiency anemia, in which serum iron concentration was significantly elevated. We found that intraperitoneal injection of iron-dextran caused severe iron deposition in renal interstitial fibroblasts, the site of Epo production. Iron overload induced by either intraperitoneal injection or feeding decreased activity of endogenous Epo gene expression by reducing levels of hypoxia-inducible transcription factor 2α (HIF2α), the major transcriptional activator of the Epo gene. Administration of an iron-deficient diet to the anemic mice reduced serum iron to normal concentration and enhanced the ability of renal Epo production. These results demonstrate that iron overload due to Epo deficiency attenuates endogenous Epo gene expression in the kidneys. Thus, iron suppresses Epo production by reducing HIF2α concentration in renal interstitial fibroblasts.
J Am Coll Cardiol. 2015 Apr 7;65(13):1324-36.
Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JM, de Graaf BM, van de Beek G, Gallo E, Kruithof BP, Venselaar H, Myers LA, Laga S, Doyle AJ, Oswald G, van Cappellen GW, Yamanaka I, van der Helm RM, Beverloo B, de Klein A, Pardo L, Lammens M, Evers C,
PMID: 25835445 | DOI: 10.1016/j.jacc.2015.01.040.
BACKGROUND: Aneurysms affecting the aorta are a common condition associated with high mortality as a result of aortic dissection or rupture. Investigations of the pathogenic mechanisms involved in syndromic types of thoracic aortic aneurysms, such as Marfan and Loeys-Dietz syndromes, have revealed an important contribution of disturbed transforming growth factor (TGF)-β signaling. OBJECTIVES: This study sought to discover a novel gene causing syndromic aortic aneurysms in order to unravel the underlying pathogenesis. METHODS: We combined genome-wide linkage analysis, exome sequencing, and candidate gene Sanger sequencing in a total of 470 index cases with thoracic aortic aneurysms. Extensive cardiological examination, including physical examination, electrocardiography, and transthoracic echocardiography was performed. In adults, imaging of the entire aorta using computed tomography or magnetic resonance imaging was done. RESULTS: Here, we report on 43 patients from 11 families with syndromic presentations of aortic aneurysms caused by TGFB3 mutations. We demonstrate that TGFB3 mutations are associated with significant cardiovascular involvement, including thoracic/abdominal aortic aneurysm and dissection, and mitral valve disease. Other systemic features overlap clinically with Loeys-Dietz, Shprintzen-Goldberg, and Marfan syndromes, including cleft palate, bifid uvula, skeletal overgrowth, cervical spine instability and clubfoot deformity. In line with previous observations in aortic wall tissues of patients with mutations in effectors of TGF-β signaling (TGFBR1/2, SMAD3, and TGFB2), we confirm a paradoxical up-regulation of both canonical and noncanonical TGF-β signaling in association with up-regulation of the expression of TGF-β ligands. CONCLUSIONS: Our findings emphasize the broad clinical variability associated with TGFB3 mutations and highlight the importance of early recognition of the disease because of high cardiovascular risk.
J Clin Invest.
2016 Apr 18
Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH.
PMID: 27088801 | DOI: 10.1172/JCI83551
Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com