ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Pflugers Arch.
2016 May 25
Gerl K, Nolan KA, Karger C, Fuchs M, Wenger RH, Stolt CC, Willam C, Kurtz A, Kurt B.
PMID: 27220347 | DOI: -
PDGFR-β-expressing cells of the kidneys are considered as a relevant site of erythropoietin (EPO) production. The origin of these cells, their contribution to renal EPO production, and if PDGFR-β-positive cells in other organs are also capable to express EPO are less clear. We addressed these questions in mice, in which hypoxia-inducible transcription factors were stabilized in PDGFR-β+ cells by inducible deletion of the von Hippel-Lindau (Vhl) protein. Vhl deletion led to a 600-fold increase of plasma EPO concentration, 170-fold increase of renal EPO messenger RNA (mRNA) levels, and an increase of hematocrit values up to 70 %. Intrarenal localization of EPO-expressing cells coincided with the zonal heterogeneity and distribution of cells expressing PDGFR-β. Amongst a variety of extrarenal organs only adrenal glands showed significant EPO mRNA expression after Vhl deletion in PDGFR-β+ cells. EPO mRNA, plasma EPO, and hematocrit fell to subnormal values if HIF-2α, but not HIF-1α, was deleted either alone or in combination with Vhl in PDGFR-β+ cells. Treatment of mice with a prolyl-hydroxylase inhibitor caused an increase of EPO mRNA abundance and plasma EPO concentrations in wild-type mice and in mice lacking HIF-1α in PDGFR-β+ cells but exerted no effect in mice lacking HIF-2α in PDGFR-β+ cells. These findings suggest that PDGFR-β+ cells are the only relevant site of EPO expression in the kidney and that HIF-2 is the essential transcription factor triggering EPO expression therein. Moreover, our findings suggest that PDGFR-β+cells elaborating EPO might arise from the metanephric mesenchyme, rather than from the neural crest.
PLoS Genet.
2018 Nov 19
Vasquez YM, Wang X, Wetendorf M, Franco HL, Mo Q, Wang T, Lanz RB, Young SL, Lessey BA, Spencer TE, Lydon JP, DeMayo FJ.
PMID: 30452456 | DOI: 10.1371/journal.pgen.1007787
Successful embryo implantation requires a receptive endometrium. Poor uterine receptivity can account for implantation failure in women who experience recurrent pregnancy loss or multiple rounds of unsuccessful in vitro fertilization cycles. Here, we demonstrate that the transcription factor Forkhead Box O1 (FOXO1) is a critical regulator of endometrial receptivity in vivo. Uterine ablation of Foxo1 using the progesterone receptor Cre (PgrCre) mouse model resulted in infertility due to altered epithelial cell polarity and apoptosis, preventing the embryo from penetrating the luminal epithelium. Analysis of the uterine transcriptome after Foxo1 ablation identified alterations in gene expression for transcripts involved in the activation of cell invasion, molecular transport, apoptosis, β-catenin (CTNNB1) signaling pathway, and an increase in PGR signaling. The increase of PGR signaling was due to PGR expression being retained in the uterine epithelium during the window of receptivity. Constitutive expression of epithelial PGR during this receptive period inhibited expression of FOXO1 in the nucleus of the uterine epithelium. The reciprocal expression of PGR and FOXO1 was conserved in human endometrial samples during the proliferative and secretory phase. This demonstrates that expression of FOXO1 and the loss of PGR during the window of receptivity are interrelated and critical for embryo implantation.
PLoS One.
2017 Nov 28
Ahrens JM, Jones JD, Nieves NJ, Mitzey AM, DeLuca HF, Clagett-Dame M.
PMID: 29182680 | DOI: 10.1371/journal.pone.0188887
While all 2-methylene-19-nor analogs of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) tested produce an increase in epidermal thickness in the rhino mouse, only a subset reduce utricle size (comedolysis). All-trans retinoic acid (atRA) also causes epidermal thickening and a reduction in utricle size in the rhino mouse. We now report that 2-methylene-19-nor-(20S)-1α-hydroxybishomopregnacalciferol (2MbisP), a comedolytic analog, increases epidermal thickening more rapidly than does atRA, while both reduce utricle area at an equal rate. Whereas unlike atRA, 2MbisP does not alter the epidermal growth factor receptor ligand, heparin-binding epidermal growth factor-like growth factor, it does increase the expression of both amphiregulin and epigen mRNA, even after a single dose. In situ hybridization reveals an increase in these transcripts throughout the closing utricle as well as in the interfollicular epidermis. The mRNAs for other EGFR ligands including betacellulin and transforming growth factor-α, as well as the epidermal growth factor receptor are largely unaffected by 2MbisP. Another analog, 2-methylene-19-nor-(20S)-26,27-dimethylene-1α,25-dihydroxyvitamin D3 (CAGE-3), produces epidermal thickening but fails to reduce utricle size or increase AREG mRNA levels. CAGE-3 modestly increases epigen mRNA levels, but only after 5 days of dosing. Thus, 2-MbisP produces unique changes in epidermal growth factor receptor ligand mRNAs that may be responsible for both epidermal proliferation and a reduction in utricle size.
Kidney International
2018 Nov 27
Imeri F, Nolan KA, Bapst AM, Santambrogio S, Abreu-Rodríguez I, Spielmann P, Pfundstein S, Libertini S, Crowther L, Orlando IMC, Dahl SL, Keodara A, Kuo W, Kurtcuoglu V, Scholz CC, Qi W, Hummler E, Hoogewijs D, Wenger RH.
PMID: - | DOI: 10.1016/j.kint.2018.08.043
Erythropoietin (Epo) is essential for erythropoiesis and is mainly produced by the fetal liver and the adult kidney following hypoxic stimulation. Epo regulation is commonly studied in hepatoma cell lines, but differences in Epo regulation between kidney and liver limit the understanding of Epo dysregulation in polycythaemia and anaemia. To overcome this limitation, we have generated a novel transgenic mouse model expressing Cre recombinase specifically in the active fraction of renal Epo-producing (REP) cells. Crossing with reporter mice confirmed the inducible and highly specific tagging of REP cells, located in the corticomedullary border region where there is a steep drop in oxygen bioavailability. A novel method was developed to selectively grow primary REP cells in culture and to generate immortalized clonal cell lines, called fibroblastoid atypical interstitial kidney (FAIK) cells. FAIK cells show very early hypoxia-inducible factor (HIF)-2α induction, which precedes Epo transcription. Epo induction in FAIK cells reverses rapidly despite ongoing hypoxia, suggesting a cell autonomous feedback mechanism. In contrast, HIF stabilizing drugs resulted in chronic Epo induction in FAIK cells. RNA sequencing of three FAIK cell lines derived from independent kidneys revealed a high degree of overlap and suggests that REP cells represent a unique cell type with properties of pericytes, fibroblasts, and neurons, known as telocytes. These novel cell lines may be helpful to investigate myofibroblastdifferentiation in chronic kidney disease and to elucidate the molecular mechanisms of HIF stabilizing drugs currently in phase III studies to treat anemia in end-stage kidney disease.
Kidney Int.
2018 Sep 21
Suzuki N, Matsuo-Tezuka Y, Sasaki Y, Sato K, Miyauchi K, Kato K, Saito S, Shimonaka Y, Hirata M, Yamamoto M.
PMID: 30245128 | DOI: 10.1016/j.kint.2018.06.028
Iron is an essential mineral for oxygen delivery and for a variety of enzymatic activities, but excessive iron results in oxidative cytotoxicity. Because iron is primarily used in red blood cells, defective erythropoiesis caused by loss of the erythroid growth factor erythropoietin (Epo) elevates iron storage levels in serum and tissues. Here, we investigated the effects of iron in a mouse model of Epo-deficiency anemia, in which serum iron concentration was significantly elevated. We found that intraperitoneal injection of iron-dextran caused severe iron deposition in renal interstitial fibroblasts, the site of Epo production. Iron overload induced by either intraperitoneal injection or feeding decreased activity of endogenous Epo gene expression by reducing levels of hypoxia-inducible transcription factor 2α (HIF2α), the major transcriptional activator of the Epo gene. Administration of an iron-deficient diet to the anemic mice reduced serum iron to normal concentration and enhanced the ability of renal Epo production. These results demonstrate that iron overload due to Epo deficiency attenuates endogenous Epo gene expression in the kidneys. Thus, iron suppresses Epo production by reducing HIF2α concentration in renal interstitial fibroblasts.
J Clin Invest.
2016 Apr 18
Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB, Fong GH, Gross KW, Haase VH.
PMID: 27088801 | DOI: 10.1172/JCI83551
Renal peritubular interstitial fibroblast-like cells are critical for adult erythropoiesis, as they are the main source of erythropoietin (EPO). Hypoxia-inducible factor 2 (HIF-2) controls EPO synthesis in the kidney and liver and is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3, which function as cellular oxygen sensors. Renal interstitial cells with EPO-producing capacity are poorly characterized, and the role of the PHD/HIF-2 axis in renal EPO-producing cell (REPC) plasticity is unclear. Here we targeted the PHD/HIF-2/EPO axis in FOXD1 stroma-derived renal interstitial cells and examined the role of individual PHDs in REPC pool size regulation and renal EPO output. Renal interstitial cells with EPO-producing capacity were entirely derived from FOXD1-expressing stroma, and Phd2 inactivation alone induced renal Epo in a limited number of renal interstitial cells. EPO induction was submaximal, as hypoxia or pharmacologic PHD inhibition further increased the REPC fraction among Phd2-/- renal interstitial cells. Moreover, Phd1 and Phd3 were differentially expressed in renal interstitium, and heterozygous deficiency for Phd1 and Phd3 increased REPC numbers in Phd2-/- mice. We propose that FOXD1 lineage renal interstitial cells consist of distinct subpopulations that differ in their responsiveness to Phd2 inactivation and thus regulation of HIF-2 activity and EPO production under hypoxia or conditions of pharmacologic or genetic PHD inactivation.
EMBO J.
2017 Jun 06
Aikawa S, Kano K, Inoue A, Wang J, Saigusa D, Nagamatsu T, Hirota Y, Fujii T, Tsuchiya S, Taketomi Y, Sugimoto Y, Murakami M, Arita M, Kurano M, Ikeda H, Yatomi Y, Chun J, Aoki J.
PMID: 28588064 | DOI: 10.15252/embj.201696290
During pregnancy, up-regulation of heparin-binding (HB-) EGF and cyclooxygenase-2 (COX-2) in the uterine epithelium contributes to decidualization, a series of uterine morphological changes required for placental formation and fetal development. Here, we report a key role for the lipid mediator lysophosphatidic acid (LPA) in decidualization, acting through its G-protein-coupled receptor LPA3 in the uterine epithelium. Knockout of Lpar3 or inhibition of the LPA-producing enzyme autotaxin (ATX) in pregnant mice leads to HB-EGF and COX-2 down-regulation near embryos and attenuates decidual reactions. Conversely, selective pharmacological activation of LPA3 induces decidualization via up-regulation of HB-EGF and COX-2. ATX and its substrate lysophosphatidylcholine can be detected in the uterine epithelium and in pre-implantation-stage embryos, respectively. Our results indicate that ATX-LPA-LPA3 signaling at the embryo-epithelial boundary induces decidualization via the canonical HB-EGF and COX-2 pathways.
Nat. Commun.
2018 Jun 22
Kelleher Am, Milano-Foster J, Behura SK, Spencer TE.
PMID: - | DOI: 10.1038/s41467-018-04848-8
Uterine glands are essential for pregnancy establishment. By employing forkhead box A2 (FOXA2)-deficient mouse models coupled with leukemia inhibitory factor (LIF) repletion, we reveal definitive roles of uterine glands in embryo implantation and stromal cell decidualization. Here we report that LIF from the uterine glands initiates embryo-uterine communication, leading to embryo attachment and stromal cell decidualization. Detailed histological and molecular analyses discovered that implantation crypt formation does not involve uterine glands, but removal of the luminal epithelium is delayed and subsequent decidualization fails in LIF-replaced glandless but not gland-containing FOXA2-deficient mice. Adverse ripple effects of those dysregulated events in the glandless uterus result in embryo resorption and pregnancy failure. These studies provide evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com