Ding, CY;Ding, YT;Ji, H;Wang, YY;Zhang, X;Yin, DM;
PMID: 37147705 | DOI: 10.1186/s13578-023-01032-4
Where the gene is expressed determines the function of the gene. Neuregulin 1 (Nrg1) encodes a tropic factor and is genetically linked with several neuropsychiatry diseases such as schizophrenia, bipolar disorder and depression. Nrg1 has broad functions ranging from regulating neurodevelopment to neurotransmission in the nervous system. However, the expression pattern of Nrg1 at the cellular and circuit levels in rodent brain is not full addressed.Here we used CRISPR/Cas9 techniques to generate a knockin mouse line (Nrg1Cre/+) that expresses a P2A-Cre cassette right before the stop codon of Nrg1 gene. Since Cre recombinase and Nrg1 are expressed in the same types of cells in Nrg1Cre/+ mice, the Nrg1 expression pattern can be revealed through the Cre-reporting mice or adeno-associated virus (AAV) that express fluorescent proteins in a Cre-dependent way. Using unbiased stereology and fluorescence imaging, the cellular expression pattern of Nrg1 and axon projections of Nrg1-positive neurons were investigated.In the olfactory bulb (OB), Nrg1 is expressed in GABAergic interneurons including periglomerular (PG) and granule cells. In the cerebral cortex, Nrg1 is mainly expressed in the pyramidal neurons of superficial layers that mediate intercortical communications. In the striatum, Nrg1 is highly expressed in the Drd1-positive medium spiny neurons (MSNs) in the shell of nucleus accumbens (NAc) that project to substantia nigra pars reticulata (SNr). In the hippocampus, Nrg1 is mainly expressed in granule neurons in the dentate gyrus and pyramidal neurons in the subiculum. The Nrg1-expressing neurons in the subiculum project to retrosplenial granular cortex (RSG) and mammillary nucleus (MM). Nrg1 is highly expressed in the median eminence (ME) of hypothalamus and Purkinje cells in the cerebellum.Nrg1 is broadly expressed in mouse brain, mainly in neurons, but has unique expression patterns in different brain regions.
Journal of the Canadian Association of Gastroenterology
Abdullah, N;Defaye, M;Hassan, A;Cumenal, M;Iftinca, M;Young, D;Ohland, C;Dufour, A;McCoy, K;Altier, C;
| DOI: 10.1093/jcag/gwab049.229
Background Pain is the most common cause of disability in IBD. What causes inter-individual variability in chronic pain after successful treatment of inflammation remains elusive. We have shown that activation of TRPV1+ colonic nociceptors is essential for the establishment of persistent pain in DSS colitis. Nociceptor development coincides with microbial colonization, while early life dysbiosis can lead to visceral hypersensitivity in adulthood. Whether the microbiota dictates nociceptor development and pain susceptibility remains unknown. Here we test the hypothesis that the microbiota programs nociceptor specification during early development, rendering them more susceptible to sensitization later in life. We have identified the aryl hydrocarbon receptor (AHR) that senses bacterial-derived metabolites as a candidate target that orchestrates transcriptional regulation in nociceptors. Aims We investigated the developmental regulation of nociceptors by the microbiome and how it influences pain sensitivity. We will determine the effects of AHR activation on nociceptor lineage and function as well as the long term impact of AHR signaling on pain sensitivity. Methods We have developed a germ-free (GF) TRPV1-GFP reporter mouse that was used to phenotype and visualise TRPV1+ nociceptors in the absence of a microbiota. We will isolate TRPV1+ neurons by FACS to identify genes that are under the control of the microbiota and to characterise the phosphoproteome of TRPV1+ nociceptors in GF conditions. Finally, we will investigate the role of AHR signaling in nociceptors both acutely and during development. Results We showed a reduction in thermal pain threshold and a reduction in capsaicin test responses in GF mice. The number and size of DRG neurons was unchanged in GF mice. Examination of molecular markers for peptidergic (CGRP) and non-peptidergic (IB4) neurons did not show a difference. Finally, there was no difference in the expression of TRPV1, suggesting post-translational modification of the channel. In cultured DRG neurons, we found a decrease in capsaicin induced action potentials and a decrease in the amplitude of the capsaicin response in GF mice. Using RNAscope, we showed that TRPV1+ neurons express AHR. Conclusions Our results highlight the importance of bacterial composition in regulating the development of nociceptors and pain sensitivity in adulthood. Furthermore, we are the first to demonstrate the expression of AHR in sensory neurons. These findings point to a role of the microbiota in programming nociceptors during development. My work will advance our understanding of the role of commensal bacteria in regulating pain and could lead to recommendations for the treatment of neonates in early life to reduce their risk of developing chronic pain later in life. Funding Agencies CAG, CIHR
Ye, H;Cao, T;Shu, Q;Chen, Y;Lu, Y;He, Z;Li, Z;
PMID: 36931057 | DOI: 10.1016/j.psyneuen.2023.106080
One negative emotional state from morphine protracted abstinence is anxiety which can drive craving and relapse risk in opioid addicts. Although the orexinergic system has been reported to be important in mediating emotion processing and addiction, the role of orexinergic system in anxiety from drug protracted abstinence remains elusive. In this study, by using behavioral test, western blot, electrophysiology and virus-mediated regulation of orexin receptor 1 (OX1R), we found that: (1) Intraperitoneal and intra-VTA administration of a selective OX1R antagonist SB334867 alleviated anxiety-like behaviors in open field test (OFT) but not in elevated plus maze test (EPM) in morphine protracted abstinent male mice. (2) OX1R expression in the VTA was upregulated by morphine withdrawal. (3) Virus-mediated knockdown of OX1R in the VTA prevented morphine abstinence-induced anxiety-like behaviors and virus-mediated overexpression of OX1R in the VTA was sufficient to produce anxiety-like behaviors in male mice. (4) The VTA neuronal activity was increased significantly induced by morphine protracted abstinence, which was mediated by OX1R. (5) OX1R was widely distributed in the neuronal soma and processes of dopaminergic and non-dopaminergic neurons in the VTA. The findings revealed that the OX1R mediates morphine abstinence-induced anxiety-like behaviors and the VTA plays a critical role in this effect.
Co-localization of nociceptive markers in the lumbar dorsal root ganglion and spinal cord of dromedary camel
The Journal of comparative neurology
Javed, H;Rehmathulla, S;Tariq, S;Ali, MA;Emerald, BS;Shehab, S;
PMID: 34468017 | DOI: 10.1002/cne.25240
Nociceptive markers in mice have been identified in two distinct peptidergic and nonpeptidergic neurons in the dorsal root ganglion (DRG) and distributed in different laminae of the dorsal horn of the spinal cord. Recently, however, a study in humans showed a significant overlapping in these two populations. In this study, we investigated the distribution of various nociceptive markers in the lumbar DRG and spinal cord of the dromedary camel. Immunohistochemical data showed a remarkable percentage of total neurons in the DRG expressed IB4 binding (54.5%), calcitonin gene-related peptide (CGRP; 49.5%), transient receptor potential vanilloid 1 (TRPV1; 48.2%), and nitric oxide synthase (NOS; 30.6%). The co-localization data showed that 89.6% and 74.0% of CGRP- and TRPV1-labeled neurons, respectively, were IB4 positive. In addition, 61.6% and 84.2% of TRPV1- and NOS-immunoreactive neurons, respectively, were also co-localized with CGRP. The distribution of IB4, CGRP, TRPV1, substance P, and NOS immunoreactivities in the spinal cord were observed in lamina I and outer lamina II (IIo). Quantitative data showed that 82.4% of IB4-positive nerve terminals in laminae I and IIo were co-localized with CGRP, and 86.0% of CGRP-labeled terminals were co-localized with IB4. Similarly, 85.1% of NOS-labeled nerve terminals were co-localized with CGRP. No neuropeptide Y (NPY) or cholecystokinin (CCK) immunoreactivities were detected in the DRG, and no co-localization between IB4, NPY, and CCK were observed in the spinal cord. Our results demonstrate marked convergence of nociceptive markers in the primary afferent neurons in camels, which is similar to humans rather than the mouse. The data also emphasizes the importance of interspecies differences when selecting ideal animal models for studying nociception and treating chronic pain.
Proceedings of the National Academy of Sciences of the United States of America
Marin, IA;Gutman-Wei, AY;Chew, KS;Raissi, AJ;Djurisic, M;Shatz, CJ;
PMID: 35648829 | DOI: 10.1073/pnas.2203965119
Significance Molecules regulated by neuronal activity are necessary for circuits to adapt to changing inputs. Specific classical major histocompatibility class I (MHCI) molecules play roles in circuit and synaptic plasticity, but the function of most members of this family remains unexplored in brain. Here, we show that a nonclassical MHCI molecule, Qa-1 (H2-T23), is expressed in a subset of excitatory neurons and regulated by visually driven activity in the cerebral cortex. Moreover, CD94/NKG2 heterodimers, cognate receptors for Qa-1, are expressed in microglia. A functional interaction between Qa-1 and CD94/NKG2 is necessary for regulating the magnitude of ocular dominance plasticity during the critical period in the visual cortex, implying an interaction in which activity-dependent changes in neurons may be monitored by microglia.
Mendez-David, I;Schofield, R;Tritschler, L;Colle, R;Guilloux, JP;Gardier, AM;Corruble, E;Hen, R;David, DJ;
PMID: 34649711 | DOI: 10.1016/j.encep.2021.09.001
Recent contradictory data has renewed discussion regarding the existence of adult hippocampal neurogenesis (AHN) in humans, i.e., the continued production of new neurons in the brain after birth. The present review revisits the debate of AHN in humans from a historical point of view in the face of contradictory evidence, analyzing the methods employed to investigate this phenomenon. Thus, to date, of the 57 studies performed in humans that we reviewed, 84% (48) concluded in favor of the presence of newborn neurons in the human adult hippocampus. Besides quality of the tissue (such as postmortem intervals below 26hours as well as tissue conservation and fixation), considerations for assessing and quantify AHN in the human brain require the use of stereology and toxicological analyses of clinical data of the patient.
Stress (Amsterdam, Netherlands)
Raff, H;Glaeser, BL;Szabo, A;Olsen, CM;Everson, CA;
PMID: 36856367 | DOI: 10.1080/10253890.2023.2185864
Hypothalamic-pituitary-adrenal (HPA) axis dynamics are disrupted by opioids and may be involved in substance abuse; this persists during withdrawal and abstinence and is associated with co-morbid sleep disruption leading to vulnerability to relapse. We hypothesized that chronic sleep restriction (SR) alters the HPA axis diurnal rhythm and the sexually dimorphic response to acute stressor during opioid abstinence. We developed a rat model to evaluate the effect of persistent sleep loss during opioid abstinence on HPA axis dynamics in male and female rats. Plasma ACTH and corticosterone were measured diurnally and in response to acute restraint stress in rats Before (control) compared to During subsequent opioid abstinence without or with SR. Abstinence, regardless of sleep state, led to an increase in plasma ACTH and corticosterone in the morning in males. There was a tendency for higher PM plasma ACTH during abstinence in SR males (p = 0.076). ACTH and corticosterone responses to restraint were reduced in male SR rats whereas there was a failure to achieve the post-restraint nadir in female SR rats. There was no effect of the treatments or interventions on adrenal weight normalized to body weight. SR resulted in a dramatic increase in hypothalamic PVN AVP mRNA and plasma copeptin in male but not female rats. This corresponded to the attenuation of the HPA axis stress response in SR males during opioid abstinence. We have identified a potentially unique, sexually dimorphic role for magnocellular vasopressin in the control of the HPA axis during opioid abstinence and sleep restriction.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
McNulty, CJ;Fallon, IP;Amat, J;Sanchez, RJ;Leslie, NR;Root, DH;Maier, SF;Baratta, MV;
PMID: 36076018 | DOI: 10.1038/s41386-022-01443-w
Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
Dos Santos, WO;Wasinski, F;Tavares, MR;Campos, AMP;Elias, CF;List, EO;Kopchick, JJ;Szawka, RE;Donato, J;
PMID: 35803590 | DOI: 10.1210/endocr/bqac103
Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.
Fang, YP;Qin, ZH;Zhang, Y;Ning, B;
PMID: 36216123 | DOI: 10.1016/j.expneurol.2022.114239
Microglia are widely distributed in the central nervous system (CNS), where they aid in the maintenance of neuronal function and perform key auxiliary roles in phagocytosis, neural repair, immunological control, and nutrition delivery. Microglia in the undamaged spinal cord is in a stable state and serve as immune monitors. In the event of spinal cord injury (SCI), severe changes in the microenvironment and glial scar formation lead to axonal regeneration failure. Microglia participates in a series of pathophysiological processes and behave both positive and negative consequences during this period. A deep understanding of the characteristics and functions of microglia can better identify therapeutic targets for SCI. Technological innovations such as single-cell RNA sequencing (Sc-RNAseq) have led to new advances in the study of microglia heterogeneity throughout the lifespan. Here,We review the updated studies searching for heterogeneity of microglia from the developmental and pathological state, survey the activity and function of microglia in SCI and explore the recent therapeutic strategies targeting microglia in the CNS injury.
Seeker, LA;Williams, A;
PMID: 34860266 | DOI: 10.1007/s00401-021-02390-4
It is the centenary of the discovery of oligodendrocytes and we are increasingly aware of their importance in the functioning of the brain in development, adult learning, normal ageing and in disease across the life course, even in those diseases classically thought of as neuronal. This has sparked more interest in oligodendroglia for potential therapeutics for many neurodegenerative/neurodevelopmental diseases due to their more tractable nature as a renewable cell in the central nervous system. However, oligodendroglia are not all the same. Even from the first description, differences in morphology were described between the cells. With advancing techniques to describe these differences in human tissue, the complexity of oligodendroglia is being discovered, indicating apparent functional differences which may be of critical importance in determining vulnerability and response to disease, and targeting of potential therapeutics. It is timely to review the progress we have made in discovering and understanding oligodendroglial heterogeneity in health and neuropathology.
Proceedings of the National Academy of Sciences of the United States of America
Joye, DAM;Rohr, KE;Suenkens, K;Wuorinen, A;Inda, T;Arzbecker, M;Mueller, E;Huber, A;Pancholi, H;Blackmore, MG;Carmona-Alcocer, V;Evans, JA;
PMID: 37098068 | DOI: 10.1073/pnas.2216820120
Daily and annual changes in light are processed by central clock circuits that control the timing of behavior and physiology. The suprachiasmatic nucleus (SCN) in the anterior hypothalamus processes daily photic inputs and encodes changes in day length (i.e., photoperiod), but the SCN circuits that regulate circadian and photoperiodic responses to light remain unclear. Somatostatin (SST) expression in the hypothalamus is modulated by photoperiod, but the role of SST in SCN responses to light has not been examined. Our results indicate that SST signaling regulates daily rhythms in behavior and SCN function in a manner influenced by sex. First, we use cell-fate mapping to provide evidence that SST in the SCN is regulated by light via de novo Sst activation. Next, we demonstrate that Sst -/- mice display enhanced circadian responses to light, with increased behavioral plasticity to photoperiod, jetlag, and constant light conditions. Notably, lack of Sst -/- eliminated sex differences in photic responses due to increased plasticity in males, suggesting that SST interacts with clock circuits that process light differently in each sex. Sst -/- mice also displayed an increase in the number of retinorecipient neurons in the SCN core, which express a type of SST receptor capable of resetting the molecular clock. Last, we show that lack of SST signaling modulates central clock function by influencing SCN photoperiodic encoding, network after-effects, and intercellular synchrony in a sex-specific manner. Collectively, these results provide insight into peptide signaling mechanisms that regulate central clock function and its response to light.