Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (170)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (137)
  • Gad1 (85) Apply Gad1 filter
  • vGlut2 (75) Apply vGlut2 filter
  • Slc17a6 (72) Apply Slc17a6 filter
  • SLC32A1 (70) Apply SLC32A1 filter
  • FOS (62) Apply FOS filter
  • Sst (57) Apply Sst filter
  • VGAT (56) Apply VGAT filter
  • TH (55) Apply TH filter
  • Gad2 (50) Apply Gad2 filter
  • DRD2 (49) Apply DRD2 filter
  • Slc17a7 (49) Apply Slc17a7 filter
  • PVALB (46) Apply PVALB filter
  • tdTomato (44) Apply tdTomato filter
  • DRD1 (36) Apply DRD1 filter
  • GFAP (33) Apply GFAP filter
  • (-) Remove Chat filter Chat (33)
  • Crh (32) Apply Crh filter
  • egfp (31) Apply egfp filter
  • Npy (28) Apply Npy filter
  • Pomc (25) Apply Pomc filter
  • VGluT1 (25) Apply VGluT1 filter
  • Cre (24) Apply Cre filter
  • Penk (23) Apply Penk filter
  • AGRP (22) Apply AGRP filter
  • Rbfox3 (21) Apply Rbfox3 filter
  • CCK (21) Apply CCK filter
  • Oxtr (21) Apply Oxtr filter
  • OPRM1 (21) Apply OPRM1 filter
  • TAC1 (20) Apply TAC1 filter
  • Pdyn (20) Apply Pdyn filter
  • C-fos (20) Apply C-fos filter
  • GLP1R (19) Apply GLP1R filter
  • Aldh1l1 (18) Apply Aldh1l1 filter
  • GFP (18) Apply GFP filter
  • Vip (18) Apply Vip filter
  • Nts (17) Apply Nts filter
  • Prkcd (15) Apply Prkcd filter
  • Trpv1 (15) Apply Trpv1 filter
  • CALCA (14) Apply CALCA filter
  • Drd1a (14) Apply Drd1a filter
  • Bdnf (14) Apply Bdnf filter
  • MBP (14) Apply MBP filter
  • Tmem119 (14) Apply Tmem119 filter
  • Piezo2 (13) Apply Piezo2 filter
  • SOX2 (13) Apply SOX2 filter
  • Gal (13) Apply Gal filter
  • ESR1 (13) Apply ESR1 filter
  • PDGFRA (13) Apply PDGFRA filter
  • Aif1 (13) Apply Aif1 filter

Product

  • RNAscope (56) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent Assay (26) Apply RNAscope Multiplex Fluorescent Assay filter
  • TBD (20) Apply TBD filter
  • RNAscope Fluorescent Multiplex Assay (13) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent v2 (4) Apply RNAscope Multiplex Fluorescent v2 filter
  • Basescope (3) Apply Basescope filter
  • RNAscope HiPlex v2 assay (2) Apply RNAscope HiPlex v2 assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex fluorescent reagent kit v2 (1) Apply RNAscope Multiplex fluorescent reagent kit v2 filter

Research area

  • (-) Remove Neuroscience filter Neuroscience (170)
  • Development (16) Apply Development filter
  • Pain (9) Apply Pain filter
  • Inflammation (5) Apply Inflammation filter
  • Metabolism (4) Apply Metabolism filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • Cancer (3) Apply Cancer filter
  • Endocrinology (3) Apply Endocrinology filter
  • Itch (3) Apply Itch filter
  • Memory (3) Apply Memory filter
  • Psychiatry (3) Apply Psychiatry filter
  • Stem Cells (3) Apply Stem Cells filter
  • Stress (3) Apply Stress filter
  • Addiction (2) Apply Addiction filter
  • Aging (2) Apply Aging filter
  • ALS (2) Apply ALS filter
  • Behavior (2) Apply Behavior filter
  • CGT (2) Apply CGT filter
  • HIV (2) Apply HIV filter
  • Huntington's Disease (2) Apply Huntington's Disease filter
  • Other: Methods (2) Apply Other: Methods filter
  • Spinal Cord injury (2) Apply Spinal Cord injury filter
  • Alcohol Use disorder (1) Apply Alcohol Use disorder filter
  • Alzheimers (1) Apply Alzheimers filter
  • Anxiety (1) Apply Anxiety filter
  • Chronic Pain (1) Apply Chronic Pain filter
  • Circadian clock (1) Apply Circadian clock filter
  • Epilepsy (1) Apply Epilepsy filter
  • Evolution (1) Apply Evolution filter
  • Eyes (1) Apply Eyes filter
  • Facial grimaces (1) Apply Facial grimaces filter
  • Hypertension (1) Apply Hypertension filter
  • Immunology (1) Apply Immunology filter
  • Injury (1) Apply Injury filter
  • Jet Leg (1) Apply Jet Leg filter
  • LncRNAs (1) Apply LncRNAs filter
  • Motor Function (1) Apply Motor Function filter
  • MS (1) Apply MS filter
  • Obesity (1) Apply Obesity filter
  • Opioid Abstinence (1) Apply Opioid Abstinence filter
  • Opioid use (1) Apply Opioid use filter
  • Other: Gut (1) Apply Other: Gut filter
  • Other: Heart (1) Apply Other: Heart filter
  • Protocols (1) Apply Protocols filter
  • Regeneration (1) Apply Regeneration filter
  • Schizophrenia (1) Apply Schizophrenia filter
  • Sex Differences (1) Apply Sex Differences filter
  • Sleep (1) Apply Sleep filter
  • Stem cell (1) Apply Stem cell filter
  • Thermoregulation (1) Apply Thermoregulation filter

Category

  • Publications (170) Apply Publications filter
A230 THE ROLE OF THE MICROBIOTA IN NOCICEPTOR DEVELOPMENT AND PAIN SENSITIVITY

Journal of the Canadian Association of Gastroenterology

2022 Feb 21

Abdullah, N;Defaye, M;Hassan, A;Cumenal, M;Iftinca, M;Young, D;Ohland, C;Dufour, A;McCoy, K;Altier, C;
| DOI: 10.1093/jcag/gwab049.229

Background Pain is the most common cause of disability in IBD. What causes inter-individual variability in chronic pain after successful treatment of inflammation remains elusive. We have shown that activation of TRPV1+ colonic nociceptors is essential for the establishment of persistent pain in DSS colitis. Nociceptor development coincides with microbial colonization, while early life dysbiosis can lead to visceral hypersensitivity in adulthood. Whether the microbiota dictates nociceptor development and pain susceptibility remains unknown. Here we test the hypothesis that the microbiota programs nociceptor specification during early development, rendering them more susceptible to sensitization later in life. We have identified the aryl hydrocarbon receptor (AHR) that senses bacterial-derived metabolites as a candidate target that orchestrates transcriptional regulation in nociceptors. Aims We investigated the developmental regulation of nociceptors by the microbiome and how it influences pain sensitivity. We will determine the effects of AHR activation on nociceptor lineage and function as well as the long term impact of AHR signaling on pain sensitivity. Methods We have developed a germ-free (GF) TRPV1-GFP reporter mouse that was used to phenotype and visualise TRPV1+ nociceptors in the absence of a microbiota. We will isolate TRPV1+ neurons by FACS to identify genes that are under the control of the microbiota and to characterise the phosphoproteome of TRPV1+ nociceptors in GF conditions. Finally, we will investigate the role of AHR signaling in nociceptors both acutely and during development. Results We showed a reduction in thermal pain threshold and a reduction in capsaicin test responses in GF mice. The number and size of DRG neurons was unchanged in GF mice. Examination of molecular markers for peptidergic (CGRP) and non-peptidergic (IB4) neurons did not show a difference. Finally, there was no difference in the expression of TRPV1, suggesting post-translational modification of the channel. In cultured DRG neurons, we found a decrease in capsaicin induced action potentials and a decrease in the amplitude of the capsaicin response in GF mice. Using RNAscope, we showed that TRPV1+ neurons express AHR. Conclusions Our results highlight the importance of bacterial composition in regulating the development of nociceptors and pain sensitivity in adulthood. Furthermore, we are the first to demonstrate the expression of AHR in sensory neurons. These findings point to a role of the microbiota in programming nociceptors during development. My work will advance our understanding of the role of commensal bacteria in regulating pain and could lead to recommendations for the treatment of neonates in early life to reduce their risk of developing chronic pain later in life. Funding Agencies CAG, CIHR
Blockade of orexin receptor 1 attenuates morphine protracted abstinence-induced anxiety-like behaviors in male mice

Psychoneuroendocrinology

2023 May 01

Ye, H;Cao, T;Shu, Q;Chen, Y;Lu, Y;He, Z;Li, Z;
PMID: 36931057 | DOI: 10.1016/j.psyneuen.2023.106080

One negative emotional state from morphine protracted abstinence is anxiety which can drive craving and relapse risk in opioid addicts. Although the orexinergic system has been reported to be important in mediating emotion processing and addiction, the role of orexinergic system in anxiety from drug protracted abstinence remains elusive. In this study, by using behavioral test, western blot, electrophysiology and virus-mediated regulation of orexin receptor 1 (OX1R), we found that: (1) Intraperitoneal and intra-VTA administration of a selective OX1R antagonist SB334867 alleviated anxiety-like behaviors in open field test (OFT) but not in elevated plus maze test (EPM) in morphine protracted abstinent male mice. (2) OX1R expression in the VTA was upregulated by morphine withdrawal. (3) Virus-mediated knockdown of OX1R in the VTA prevented morphine abstinence-induced anxiety-like behaviors and virus-mediated overexpression of OX1R in the VTA was sufficient to produce anxiety-like behaviors in male mice. (4) The VTA neuronal activity was increased significantly induced by morphine protracted abstinence, which was mediated by OX1R. (5) OX1R was widely distributed in the neuronal soma and processes of dopaminergic and non-dopaminergic neurons in the VTA. The findings revealed that the OX1R mediates morphine abstinence-induced anxiety-like behaviors and the VTA plays a critical role in this effect.
Co-localization of nociceptive markers in the lumbar dorsal root ganglion and spinal cord of dromedary camel

The Journal of comparative neurology

2021 Sep 01

Javed, H;Rehmathulla, S;Tariq, S;Ali, MA;Emerald, BS;Shehab, S;
PMID: 34468017 | DOI: 10.1002/cne.25240

Nociceptive markers in mice have been identified in two distinct peptidergic and nonpeptidergic neurons in the dorsal root ganglion (DRG) and distributed in different laminae of the dorsal horn of the spinal cord. Recently, however, a study in humans showed a significant overlapping in these two populations. In this study, we investigated the distribution of various nociceptive markers in the lumbar DRG and spinal cord of the dromedary camel. Immunohistochemical data showed a remarkable percentage of total neurons in the DRG expressed IB4 binding (54.5%), calcitonin gene-related peptide (CGRP; 49.5%), transient receptor potential vanilloid 1 (TRPV1; 48.2%), and nitric oxide synthase (NOS; 30.6%). The co-localization data showed that 89.6% and 74.0% of CGRP- and TRPV1-labeled neurons, respectively, were IB4 positive. In addition, 61.6% and 84.2% of TRPV1- and NOS-immunoreactive neurons, respectively, were also co-localized with CGRP. The distribution of IB4, CGRP, TRPV1, substance P, and NOS immunoreactivities in the spinal cord were observed in lamina I and outer lamina II (IIo). Quantitative data showed that 82.4% of IB4-positive nerve terminals in laminae I and IIo were co-localized with CGRP, and 86.0% of CGRP-labeled terminals were co-localized with IB4. Similarly, 85.1% of NOS-labeled nerve terminals were co-localized with CGRP. No neuropeptide Y (NPY) or cholecystokinin (CCK) immunoreactivities were detected in the DRG, and no co-localization between IB4, NPY, and CCK were observed in the spinal cord. Our results demonstrate marked convergence of nociceptive markers in the primary afferent neurons in camels, which is similar to humans rather than the mouse. The data also emphasizes the importance of interspecies differences when selecting ideal animal models for studying nociception and treating chronic pain.
The nonclassical MHC class I Qa-1 expressed in layer 6 neurons regulates activity-dependent plasticity via microglial CD94/NKG2 in the cortex

Proceedings of the National Academy of Sciences of the United States of America

2022 Jun 07

Marin, IA;Gutman-Wei, AY;Chew, KS;Raissi, AJ;Djurisic, M;Shatz, CJ;
PMID: 35648829 | DOI: 10.1073/pnas.2203965119

Significance Molecules regulated by neuronal activity are necessary for circuits to adapt to changing inputs. Specific classical major histocompatibility class I (MHCI) molecules play roles in circuit and synaptic plasticity, but the function of most members of this family remains unexplored in brain. Here, we show that a nonclassical MHCI molecule, Qa-1 (H2-T23), is expressed in a subset of excitatory neurons and regulated by visually driven activity in the cerebral cortex. Moreover, CD94/NKG2 heterodimers, cognate receptors for Qa-1, are expressed in microglia. A functional interaction between Qa-1 and CD94/NKG2 is necessary for regulating the magnitude of ocular dominance plasticity during the critical period in the visual cortex, implying an interaction in which activity-dependent changes in neurons may be monitored by microglia.
Reviving through human hippocampal newborn neurons

L'Encephale

2021 Oct 11

Mendez-David, I;Schofield, R;Tritschler, L;Colle, R;Guilloux, JP;Gardier, AM;Corruble, E;Hen, R;David, DJ;
PMID: 34649711 | DOI: 10.1016/j.encep.2021.09.001

Recent contradictory data has renewed discussion regarding the existence of adult hippocampal neurogenesis (AHN) in humans, i.e., the continued production of new neurons in the brain after birth. The present review revisits the debate of AHN in humans from a historical point of view in the face of contradictory evidence, analyzing the methods employed to investigate this phenomenon. Thus, to date, of the 57 studies performed in humans that we reviewed, 84% (48) concluded in favor of the presence of newborn neurons in the human adult hippocampus. Besides quality of the tissue (such as postmortem intervals below 26hours as well as tissue conservation and fixation), considerations for assessing and quantify AHN in the human brain require the use of stereology and toxicological analyses of clinical data of the patient.
Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice

Front Neuroanat

2019 Mar 08

Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J and Gundlach AL
PMID: 30906254 | DOI: 10.3389/fnana.2019.00030

Relaxin-3 is a highly conserved neuropeptide abundantly expressed in neurons of the nucleus incertus (NI), which project to nodes of the septohippocampal system (SHS) including the medial septum/diagonal band of Broca (MS/DB) and dorsal hippocampus, as well as to limbic circuits. High densities of the Gi/o-protein-coupled receptor for relaxin-3, known as relaxin-family peptide-3 receptor (RXFP3) are expressed throughout the SHS, further suggesting a role for relaxin-3/RXFP3 signaling in modulating learning and memory processes that occur within these networks. Therefore, this study sought to gain further anatomical and functional insights into relaxin-3/RXFP3 signaling in the mouse MS/DB. Using Cre/LoxP recombination methods, we assessed locomotion, exploratory behavior, and spatial learning and long-term reference memory in adult C57BL/6J Rxfp3 (loxP/loxP) mice with targeted depletion of Rxfp3 in the MS/DB. Following prior injection of an AAV((1/2))-Cre-IRES-eGFP vector into the MS/DB to delete/deplete Rxfp3 mRNA/RXFP3 protein, mice tested in a Morris water maze (MWM) displayed an impairment in allocentric spatial learning during acquisition, as well as an impairment in long-term reference memory on probe day. However, RXFP3-depleted and control mice displayed similar motor activity in a locomotor cell and exploratory behavior in a large open-field (LOF) test. A quantitative characterization using multiplex, fluorescent in situ hybridization (ISH) identified a high level of co-localization of Rxfp3 mRNA and vesicular GABA transporter (vGAT) mRNA in MS and DB neurons (~87% and ~95% co-expression, respectively). Rxfp3 mRNA was also detected, to a correspondingly lesser extent, in vesicular glutamate transporter 2 (vGlut2) mRNA-containing neurons in MS and DB (~13% and ~5% co-expression, respectively). Similarly, a qualitative assessment of the MS/DB region, identified Rxfp3 mRNA in neurons that expressed parvalbumin (PV) mRNA (reflecting hippocampally-projecting GABA neurons), whereas choline acetyltransferase mRNA-positive (acetylcholine) neurons lacked Rxfp3 mRNA. These data are consistent with a qualitative immunohistochemical analysis that revealed relaxin-3-immunoreactive nerve fibers in close apposition with PV-immunoreactive neurons in the MS/DB. Together these studies suggest relaxin-3/RXFP3 signaling in the MS/DB plays a role in modulating specific learning and long-term memory associated behaviors in adult mice via effects on GABAergic neuron populations known for their involvement in modulating hippocampal theta rhythm and associated cognitive processes.
Striatal cholinergic interneurons are a novel target of corticotropin releasing factor.

J Neurosci.

2019 May 01

Lemos JC, Shin JH, Alvarez VA.
PMID: 31109960 | DOI: 10.1523/JNEUROSCI.0479-19.2019

Cholinergic interneurons (CINs) are critical regulators of striatal network activity and output. Changes in CIN activity are thought to encode salient changes in the environment and stimulus-response-outcome associations. Here we report that the stress-associated neuropeptide corticotropin releasing factor (CRF) produces a profound and reliable increase in the spontaneous firing of CINs in both dorsal striatum and nucleus accumbens (NAc) through activation of CRF type 1 receptors, production of cAMP and reduction in spike accommodation in male mice. The increase of CIN firing by CRF results in the activation muscarinic acetylcholine receptors type 5, which mediate potentiation of dopamine transmission in the striatum. This study provides critical mechanistic insight into how CRF modulates striatal activity and dopamine transmission in the NAc to likely account for CRF facilitation of appetitive behaviors.SIGNIFICANCE STATEMENT Although the presence of CRF receptors in the dorsal and ventral striatum has been acknowledged, the cellular identity and the functional consequences of receptor activation is unknown. Here we report that striatal cholinergic interneurons express CRF-R1 receptors and are acutely activated by the neuropeptide CRF that is released in response to salient environmental stimuli. Cholinergic interneurons make <1% of the cells in the striatum but are critical regulators of the striatal circuitry and its output. CRF's fast and potent activation of cholinergic interneurons could have far reaching behavioral implications across motivated behaviors controlled by the striatum.

Sleep restriction during opioid abstinence affects the hypothalamic-pituitary-adrenal (HPA) axis in male and female rats

Stress (Amsterdam, Netherlands)

2023 Jan 01

Raff, H;Glaeser, BL;Szabo, A;Olsen, CM;Everson, CA;
PMID: 36856367 | DOI: 10.1080/10253890.2023.2185864

Hypothalamic-pituitary-adrenal (HPA) axis dynamics are disrupted by opioids and may be involved in substance abuse; this persists during withdrawal and abstinence and is associated with co-morbid sleep disruption leading to vulnerability to relapse. We hypothesized that chronic sleep restriction (SR) alters the HPA axis diurnal rhythm and the sexually dimorphic response to acute stressor during opioid abstinence. We developed a rat model to evaluate the effect of persistent sleep loss during opioid abstinence on HPA axis dynamics in male and female rats. Plasma ACTH and corticosterone were measured diurnally and in response to acute restraint stress in rats Before (control) compared to During subsequent opioid abstinence without or with SR. Abstinence, regardless of sleep state, led to an increase in plasma ACTH and corticosterone in the morning in males. There was a tendency for higher PM plasma ACTH during abstinence in SR males (p = 0.076). ACTH and corticosterone responses to restraint were reduced in male SR rats whereas there was a failure to achieve the post-restraint nadir in female SR rats. There was no effect of the treatments or interventions on adrenal weight normalized to body weight. SR resulted in a dramatic increase in hypothalamic PVN AVP mRNA and plasma copeptin in male but not female rats. This corresponded to the attenuation of the HPA axis stress response in SR males during opioid abstinence. We have identified a potentially unique, sexually dimorphic role for magnocellular vasopressin in the control of the HPA axis during opioid abstinence and sleep restriction.
Ablation of Growth Hormone Receptor in GABAergic Neurons Leads to Increased Pulsatile Growth Hormone Secretion

Endocrinology

2022 Aug 01

Dos Santos, WO;Wasinski, F;Tavares, MR;Campos, AMP;Elias, CF;List, EO;Kopchick, JJ;Szawka, RE;Donato, J;
PMID: 35803590 | DOI: 10.1210/endocr/bqac103

Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.
Striatal dopamine 2 receptor upregulation during development predisposes to diet-induced obesity by reducing energy output in mice.

Proc Natl Acad Sci U S A.

2018 Sep 25

Labouesse MA, Sartori AM, Weinmann O, Simpson EH, Kellendonk C, Weber-Stadlbauer U.
PMID: 30254156 | DOI: 10.1073/pnas.1800171115

Dopaminergic signaling in the striatum, particularly at dopamine 2 receptors (D2R), has been a topic of active investigation in obesity research in the past decades. However, it still remains unclear whether variations in striatal D2Rs modulate the risk for obesity and if so in which direction. Human studies have yielded contradictory findings that likely reflect a complex nonlinear relationship, possibly involving a combination of causal effects and compensatory changes. Animal work indicates that although chronic obesogenic diets reduce striatal D2R function, striatal D2R down-regulation does not lead to obesity. In this study, we evaluated the consequences of striatal D2R up-regulation on body-weight gain susceptibility and energy balance in mice. We used a mouse model of D2R overexpression (D2R-OE) in which D2Rs were selectively up-regulated in striatal medium spiny neurons. We uncover a pathological mechanism by which striatal D2R-OE leads to reduced brown adipose tissue thermogenesis, reduced energy expenditure, and accelerated obesity despite reduced eating. We also show that D2R-OE restricted to development is sufficient to promote obesity and to induce energy-balance deficits. Together, our findings indicate that striatal D2R-OE during development persistently increases the propensity for obesity by reducing energy output in mice. This suggests that early alterations in the striatal dopamine system could represent a key predisposition factor toward obesity.

Implications of microglial heterogeneity in spinal cord injury progression and therapy

Experimental neurology

2022 Oct 07

Fang, YP;Qin, ZH;Zhang, Y;Ning, B;
PMID: 36216123 | DOI: 10.1016/j.expneurol.2022.114239

Microglia are widely distributed in the central nervous system (CNS), where they aid in the maintenance of neuronal function and perform key auxiliary roles in phagocytosis, neural repair, immunological control, and nutrition delivery. Microglia in the undamaged spinal cord is in a stable state and serve as immune monitors. In the event of spinal cord injury (SCI), severe changes in the microenvironment and glial scar formation lead to axonal regeneration failure. Microglia participates in a series of pathophysiological processes and behave both positive and negative consequences during this period. A deep understanding of the characteristics and functions of microglia can better identify therapeutic targets for SCI. Technological innovations such as single-cell RNA sequencing (Sc-RNAseq) have led to new advances in the study of microglia heterogeneity throughout the lifespan. Here,We review the updated studies searching for heterogeneity of microglia from the developmental and pathological state, survey the activity and function of microglia in SCI and explore the recent therapeutic strategies targeting microglia in the CNS injury.
Oligodendroglia heterogeneity in the human central nervous system

Acta neuropathologica

2021 Dec 03

Seeker, LA;Williams, A;
PMID: 34860266 | DOI: 10.1007/s00401-021-02390-4

It is the centenary of the discovery of oligodendrocytes and we are increasingly aware of their importance in the functioning of the brain in development, adult learning, normal ageing and in disease across the life course, even in those diseases classically thought of as neuronal. This has sparked more interest in oligodendroglia for potential therapeutics for many neurodegenerative/neurodevelopmental diseases due to their more tractable nature as a renewable cell in the central nervous system. However, oligodendroglia are not all the same. Even from the first description, differences in morphology were described between the cells. With advancing techniques to describe these differences in human tissue, the complexity of oligodendroglia is being discovered, indicating apparent functional differences which may be of critical importance in determining vulnerability and response to disease, and targeting of potential therapeutics. It is timely to review the progress we have made in discovering and understanding oligodendroglial heterogeneity in health and neuropathology.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?