ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Dis Esophagus.
2018 Jun 21
Wong MYW, Wang B, Yang A, Khor A, Xuan W, Rajendra S.
PMID: 29931323 | DOI: 10.1093/dote/doy051
Given the comparable strains of high-risk human papillomavirus (HPV) present in a subset of Barrett's dysplasia and esophageal adenocarcinoma as in head and neck squamous cell carcinomas and the anatomical proximity of both lesions, we hypothesized that oral sex may increase the risk of Barrett's dysplasia/esophageal adenocarcinoma. Therefore, we compared the sexual behavior of patients with Barrett's dysplasia/esophageal adenocarcinoma and controls (hospital, reflux, and Barrett's metaplasia) to explore a plausible mechanism of viral transmission to the lower esophagus. A hospital-based case-control study involving 36 Barrett's dysplasia/esophageal adenocarcinoma subjects and 55 controls with known HPV DNA status and markers of transcriptional activity i.e p16INK4A and E6/E7 mRNA of the esophageal epithelium was conducted to evaluate differences in sexual history (if any). Barrett's dysplasia/esophageal adenocarcinoma patients were more likely than controls to be positive for HPV DNA (18 of 36, 50% vs. 6/55, 11%, p for trend <0.0001), be male (P = 0.001) and in a relationship (P = 0.02). Viral genotypes identified were HPV 16 (n = 14), 18 (n = 2), 11 (n = 1) and 6 (n = 1). HPV exposure conferred a significantly higher risk for Barrett's dysplasia/esophageal adenocarcinoma as compared with hospital/reflux/Barrett's metaplasia controls (OR = 6.8, 95% CI: 2.1-23.1, adjusted P = 0.002). On univariate analysis, ≥6 lifetime oral sex partners were significantly associated with dysplastic Barrett's esophagus and adenocarcinoma (OR, 4.0; 95% CI: 1.2-13.7, P = 0.046). After adjustment for confounders, HPV exposure and men with ≥2 lifetime sexual partners were at significant risk for Barrett's dysplasia/esophageal adenocarcinoma. If these initial findings can be confirmed in larger studies, it could lead to effective prevention strategies in combating some of the exponential increase in the incidence of esophageal adenocarcinoma in the West.
Appl Immunohistochem Mol Morphol.
2017 Aug 02
Drumheller B, Cohen C, Lawson D, Siddiqui MT.
PMID: 28777152 | DOI: 10.1097/PAI.0000000000000550
Detection of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC) is important, as HPV-associated HNSCCs respond better to therapy. The RNAscope HPV-test is a novel RNA in situ hybridization (ISH) technique which strongly stains transcripts of E6 and E7 mRNA in formalin-fixed, paraffin-embedded tissue, with the potential to replace the indirect immunohistochemical (IHC) marker for p16 protein. A direct clinical comparison between p16 IHC and an automated RNA ISH using 18 probes has not been established. Samples from 27 formalin-fixed, paraffin-embedded HNSCC cases from the Emory University Hospital archives were stained using 18 individual RNA ISH probes for high-risk HPV (RNAscope 2.5 LS Probe ) on a Leica autostainer (Buffalo Grove, IL) and were compared with p16 IHC. Two pathologists reviewed and reached a consensus on all interpretations. The RNAscope technique was positive in 89% (24/27) and the p16 IHC was positive in 78% (21/27). The RNAscope was negative in 11.1% of samples (3/27) and the p16 IHC-negative in 22.2% (6/27). The RNA ISH detected 100% of the p16-positive IHC-stained slides and had a concordance of 88.9% (24/27). This easy to interpret automated staining method for 18 high-risk HPV genotypes is a feasible replacement for the indirect p16 IHC method.
Cell Host & Microbe
2018 Aug 30
Coffin KM, Liu J, Warren TK, Blancett CD, Kuehl KA, Nichols DK, Bearss JJ, Schellhase CW, Retterer CJ, Weidner JM, Radoshitzky SR, Brannan JM, Cardile AP, Dye JM, Palacios G, Sun MG, Kuhn JH, Bavari S, Zeng X.
PMID: - | DOI: 10.1016/j.chom.2018.08.003
Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus (MARV) disease and recently caused flare-ups of Ebola virus disease in the 2013–2016 outbreak. How filoviruses establish testicular persistence and are shed in semen remain unknown. We discovered that persistent MARV infection of seminiferous tubules, an immune-privileged site that harbors sperm production, is a relatively common event in crab-eating macaques that survived infection after antiviral treatment. Persistence triggers severe testicular damage, including spermatogenic cell depletion and inflammatory cell invasion. MARV mainly persists in Sertoli cells, leading to breakdown of the blood-testis barrier formed by inter-Sertoli cell tight junctions. This disruption is accompanied by local infiltration of immunosuppressive CD4+Foxp3+ regulatory T cells. Our study elucidates cellular events associated with testicular persistence that may promote sexual transmission of filoviruses and suggests that targeting immunosuppression may be warranted to clear filovirus persistence in damaged immune-privileged sites.
Br J Cancer
2019 Mar 20
Craig SG, Anderson LA, Schache AG, Moran M, Graham L, Currie K, Rooney K, Robinson M, Upile NS, Brooker R, Mesri M, Bingham V, McQuaid S, Jones T, McCance DJ, Salto-Tellez M, McDade SS and James JA
PMID: 30890775 | DOI: 10.1038/s41416-019-0414-9
Head Neck Pathol.
2018 Feb 14
Shah AA, Lamarre ED, Bishop JA.
PMID: 29445997 | DOI: 10.1007/s12105-018-0895-5
Human papillomavirus (HPV)-related multiphenotypic sinonasal carcinoma is a peculiar sinonasal tract tumor that demonstrates features of both a surface-derived and salivary gland carcinoma. Implicit in its name, this tumor has a consistent association with high-risk HPV, particularly type 33. It was first described in 2013 under the designation of HPV-related carcinoma with adenoid cystic carcinoma-like features. However, since its initial description additional cases have emerged which demonstrate a wide morphologic spectrum and relatively indolent clinical behavior. Herein we report our experience with a case of HPV-related multiphenotypic sinonasal carcinoma that was initially classified as adenoid cystic carcinoma in the 1980s. The patient recurred after a 30-year disease free interval. RNA in situ hybridization confirmed the presence of high-risk HPV in both her recurrence and her initial tumor in the 1980s, which allowed for reclassification as HPV-related multiphenotypic sinonasal carcinoma. Our case adds to the literature of this relatively newly described entity and supports the indolent clinical behavior of this neoplasm but also demonstrates a potential for very late local recurrence.
J Comp Pathol. 2015 Jul 16.
Palmer MV, Thacker TC, Waters WR.
PMID: 26189773 | DOI: 10.1016/j.jcpa.2015.06.004.
Veterinary Immunology and Immunopathology
2016 Aug 31
Palmer MV , Thacker TC, Waters WR.
PMID: - | DOI: 10.1016/j.vetimm.2016.08.015
Regardless of host, pathogenic mycobacteria of the Mycobacterium tuberculosiscomplex such as Mycobacterium bovis, induce a characteristic lesion known as agranuloma, tubercle or tuberculoid granuloma. Granulomas represent a distinct host response to chronic antigenic stimuli, such as foreign bodies, certain bacterial components, or persistent pathogens such as M. bovis. Granulomas are composed of specific cell types including epithelioid macrophages, lymphocytes and a morphologically distinctive cell type, the multinucleated giant cell. Multinucleated giant cells are formed by the fusion of multiple macrophages; however, their function remains unclear. In humans, giant cells in tuberculous granulomas have been shown to express various cytokines, chemokines and enzymes important to the formation and maintenance of the granuloma. The objective of this study was to quantitatively assess multinucleated giant cell cytokine expression in bovine tuberculoid granulomas; focusing on cytokines of suspected relevance to bovine tuberculosis. Using calves experimentally infected with M. bovis, in situ cytokine expression was quantitatively assessed using RNAScope® for the following cytokines TNF-α, IFN-γ, TGF-β, IL-17A and IL-10. Multinucleated giant cells in bovine tuberculoid granulomas expressed all examined cytokines to varying degrees, with differential expression of TGF-β, IL-17A and IL-10 in giant cells from early versus late stage granulomas. There was a modest, positive correlation between the level of cytokine expression and cell size or number of nuclei. These results suggest that multinucleated giant cells are active participants within bovine tuberculoid granulomas, contributing to the cytokine milieu necessary to form and maintain granulomas.
PLoS One.
2016 Nov 30
Palmer MV, Thacker TC, Waters WR.
PMID: 27902779 | DOI: 10.1371/journal.pone.0167471
The hallmark lesion of tuberculosis in humans and animals is the granuloma. The granuloma represents a distinct host cellular immune response composed of epithelioid macrophages, lymphocytes, and multinucleated giant cells, often surrounding a caseous necrotic core. Within the granuloma, host-pathogen interactions determine disease outcome. Factors within the granulomas such as cytokines and chemokines drive cell recruitment, activity, function and ultimately the success or failure of the host's ability to control infection. Hence, an understanding of the granuloma-level cytokine response is necessary to understand tuberculosis pathogenesis. In-situ cytokine expression patterns were measured using a novel in situ hybridization assay, known as RNAScope® in granulomas of the lungs, tracheobronchial lymph nodes and caudal mediastinal lymph nodes of cattle experimentally infected with Mycobacterium bovis via aerosol exposure. In spite of microscopic morphological similarities, significant differences were seen between late stage granulomas of the lung compared to those of the tracheobronchial lymph nodes for IL-17A, IFN-γ, TGF-β, IL10 and IL-22 but not for TNF-α. Additionally, significant differences were noted between granulomas from two different thoracic lymph nodes that both receive afferent lymphatics from the lungs (i.e., tracheobronchial and caudal mediastinal lymph nodes) for TNF-α, IL-17A, IFN-γ, TGF-β and IL-10 but not for IL-22. These findings show that granuloma morphology alone is not a reliable indicator of granuloma function as granulomas of similar morphologies can have disparate cytokine expression patterns. Moreover, anatomically distinct lymph nodes (tracheobronchial vs caudal mediastinal) differ in cytokine expression patterns even when both receive afferent lymphatics from a lung containing tuberculoid granulomas. These findings show that selection of tissue and anatomic location are critical factors in assessing host immune response to M. bovis and should be considered carefully.
Am J Surg Pathol.
2017 Dec 01
Gelwan E, Malm IJ, Khararjian A, Fakhry C, Bishop JA, Westra WH.
PMID: 28877058 | DOI: 10.1097/PAS.0000000000000929
The oral cavity and oropharynx have historically been viewed as a single anatomic compartment of the head and neck. The practice of combining the oral cavity and oropharynx has recently been revised, largely owing to the observation that human papillomavirus (HPV)-related carcinogenesis has a strong predilection for the oropharynx but not the oral cavity. The purpose of this study was to determine whether HPV is evenly distributed across squamous cell carcinomas of the oropharynx including those sites that do not harbor tonsillar tissues such as the soft palate. A search of the medical records of the Johns Hopkins Hospital identified 32 primary squamous cell carcinomas of the soft palate (n=31) and posterior pharyngeal wall (n=1). All were evaluated with p16 immunohistochemistry and high-risk HPV in situ hybridization (ISH) (29 by RNA ISH and 3 by DNA ISH). For comparison, we also reviewed the medical records to obtain the HPV status of patients who had undergone HPV testing of primary tonsillar carcinomas over the same time interval as part of their clinical care. High-risk HPV as detected by ISH was present in just 1 (3.1%) of the 32 oropharyngeal squamous cell carcinomas, including 1 of 2 p16-positive carcinomas. The difference in HPV detection rates between tonsillar and nontonsillar sites was significant (1/32, 3.1% vs. 917/997, 92%; P<0.0001). HPV is not frequently detected in squamous cell carcinomas arising from nontonsillar regions of the oropharynx. Indeed, squamous cell carcinomas of the soft palate more closely resemble those arising in the oral cavity than those arising in areas of the oropharynx harboring tonsillar tissue. This finding not only further sharpens our understanding of site-specific targeting by HPV, but may have practical implications regarding HPV testing and even the way the oral vault is oncologically compartmentalized to partition HPV-positive from HPV-negative cancers.
SAGE Publications (2019)
2019 Jan 04
Rettig EM, Gooi Z, Bardin R, Bogale M, Rooper L, Acha E, Koch WM.
| DOI: 10.1177/2473974X18818415
Vet Pathol
2019 Mar 21
Palmer MV, Wiarda J, Kanipe C and Thacker TC
PMID: 30895908 | DOI: 10.1177/0300985819833454
J Otolaryngol Head Neck Surg.
2017 Aug 17
Brown RE, Naqvi S, McGuire MF, Buryanek J, Karni RJ.
PMID: 28818106 | DOI: 10.1186/s40463-017-0230-2
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com