Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (17)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (61) Apply HPV E6/E7 filter
  • ZIKV (42) Apply ZIKV filter
  • SIV (17) Apply SIV filter
  • HIV (15) Apply HIV filter
  • (-) Remove HPV-HR18 filter HPV-HR18 (11)
  • HPV (11) Apply HPV filter
  • HIV-1 (8) Apply HIV-1 filter
  • TBD (7) Apply TBD filter
  • (-) Remove IL-10 filter IL-10 (6)
  • HBV (6) Apply HBV filter
  • SIVmac239 (6) Apply SIVmac239 filter
  • CXCL10 (5) Apply CXCL10 filter
  • IFN-γ (5) Apply IFN-γ filter
  • IL-17A (5) Apply IL-17A filter
  • Il-6 (5) Apply Il-6 filter
  • EBOV (5) Apply EBOV filter
  • Ccl2 (4) Apply Ccl2 filter
  • HIV1 (4) Apply HIV1 filter
  • HPV18 (4) Apply HPV18 filter
  • MERS-CoV (4) Apply MERS-CoV filter
  • HPV-HR16 (4) Apply HPV-HR16 filter
  • SARS-CoV-2 (4) Apply SARS-CoV-2 filter
  • Cd8a (3) Apply Cd8a filter
  • CD4 (3) Apply CD4 filter
  • HPV16 (3) Apply HPV16 filter
  • TNF-α (3) Apply TNF-α filter
  • TGF-β (3) Apply TGF-β filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • HEV (3) Apply HEV filter
  • EBER1 (3) Apply EBER1 filter
  • CCHFV (3) Apply CCHFV filter
  • MARV (3) Apply MARV filter
  • GAPDH (2) Apply GAPDH filter
  • IL17A (2) Apply IL17A filter
  • Cd163 (2) Apply Cd163 filter
  • CVB3 (2) Apply CVB3 filter
  • CXCL9 (2) Apply CXCL9 filter
  • TK (2) Apply TK filter
  • BRLF1 (2) Apply BRLF1 filter
  • BZLF1 (2) Apply BZLF1 filter
  • BMRF1 (2) Apply BMRF1 filter
  • IL-8 (2) Apply IL-8 filter
  • SVV ORF63 (2) Apply SVV ORF63 filter
  • SHFV (2) Apply SHFV filter
  • PCV3 (2) Apply PCV3 filter
  • Nipah (2) Apply Nipah filter
  • IL-22 (2) Apply IL-22 filter
  • CPV (2) Apply CPV filter
  • FPV (2) Apply FPV filter
  • MmuPV1 (2) Apply MmuPV1 filter

Product

  • RNAscope 2.0 Assay (4) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (4) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • (-) Remove Infectious Disease filter Infectious Disease (17)
  • Cancer (11) Apply Cancer filter
  • HPV (11) Apply HPV filter

Category

  • Publications (17) Apply Publications filter
Human papillomavirus exposure and sexual behavior are significant risk factors for Barrett's dysplasia/esophageal adenocarcinoma.

Dis Esophagus.

2018 Jun 21

Wong MYW, Wang B, Yang A, Khor A, Xuan W, Rajendra S.
PMID: 29931323 | DOI: 10.1093/dote/doy051

Given the comparable strains of high-risk human papillomavirus (HPV) present in a subset of Barrett's dysplasia and esophageal adenocarcinoma as in head and neck squamous cell carcinomas and the anatomical proximity of both lesions, we hypothesized that oral sex may increase the risk of Barrett's dysplasia/esophageal adenocarcinoma. Therefore, we compared the sexual behavior of patients with Barrett's dysplasia/esophageal adenocarcinoma and controls (hospital, reflux, and Barrett's metaplasia) to explore a plausible mechanism of viral transmission to the lower esophagus. A hospital-based case-control study involving 36 Barrett's dysplasia/esophageal adenocarcinoma subjects and 55 controls with known HPV DNA status and markers of transcriptional activity i.e p16INK4A and E6/E7 mRNA of the esophageal epithelium was conducted to evaluate differences in sexual history (if any). Barrett's dysplasia/esophageal adenocarcinoma patients were more likely than controls to be positive for HPV DNA (18 of 36, 50% vs. 6/55, 11%, p for trend <0.0001), be male (P = 0.001) and in a relationship (P = 0.02). Viral genotypes identified were HPV 16 (n = 14), 18 (n = 2), 11 (n = 1) and 6 (n = 1). HPV exposure conferred a significantly higher risk for Barrett's dysplasia/esophageal adenocarcinoma as compared with hospital/reflux/Barrett's metaplasia controls (OR = 6.8, 95% CI: 2.1-23.1, adjusted P = 0.002). On univariate analysis, ≥6 lifetime oral sex partners were significantly associated with dysplastic Barrett's esophagus and adenocarcinoma (OR, 4.0; 95% CI: 1.2-13.7, P = 0.046). After adjustment for confounders, HPV exposure and men with ≥2 lifetime sexual partners were at significant risk for Barrett's dysplasia/esophageal adenocarcinoma. If these initial findings can be confirmed in larger studies, it could lead to effective prevention strategies in combating some of the exponential increase in the incidence of esophageal adenocarcinoma in the West.

Automated RNA In Situ Hybridization for 18 High Risk Human Papilloma Viruses in Squamous Cell Carcinoma of the Head and Neck: Comparison With p16 Immunohistochemistry.

Appl Immunohistochem Mol Morphol.

2017 Aug 02

Drumheller B, Cohen C, Lawson D, Siddiqui MT.
PMID: 28777152 | DOI: 10.1097/PAI.0000000000000550

Detection of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC) is important, as HPV-associated HNSCCs respond better to therapy. The RNAscope HPV-test is a novel RNA in situ hybridization (ISH) technique which strongly stains transcripts of E6 and E7 mRNA in formalin-fixed, paraffin-embedded tissue, with the potential to replace the indirect immunohistochemical (IHC) marker for p16 protein. A direct clinical comparison between p16 IHC and an automated RNA ISH using 18 probes has not been established. Samples from 27 formalin-fixed, paraffin-embedded HNSCC cases from the Emory University Hospital archives were stained using 18 individual RNA ISH probes for high-risk HPV (RNAscope 2.5 LS Probe ) on a Leica autostainer (Buffalo Grove, IL) and were compared with p16 IHC. Two pathologists reviewed and reached a consensus on all interpretations. The RNAscope technique was positive in 89% (24/27) and the p16 IHC was positive in 78% (21/27). The RNAscope was negative in 11.1% of samples (3/27) and the p16 IHC-negative in 22.2% (6/27). The RNA ISH detected 100% of the p16-positive IHC-stained slides and had a concordance of 88.9% (24/27). This easy to interpret automated staining method for 18 high-risk HPV genotypes is a feasible replacement for the indirect p16 IHC method.

Persistent Marburg Virus Infection in the Testes of Nonhuman Primate Survivors

Cell Host & Microbe

2018 Aug 30

Coffin KM, Liu J, Warren TK, Blancett CD, Kuehl KA, Nichols DK, Bearss JJ, Schellhase CW, Retterer CJ, Weidner JM, Radoshitzky SR, Brannan JM, Cardile AP, Dye JM, Palacios G, Sun MG, Kuhn JH, Bavari S, Zeng X.
PMID: - | DOI: 10.1016/j.chom.2018.08.003

Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus (MARV) disease and recently caused flare-ups of Ebola virus disease in the 2013–2016 outbreak. How filoviruses establish testicular persistence and are shed in semen remain unknown. We discovered that persistent MARV infection of seminiferous tubules, an immune-privileged site that harbors sperm production, is a relatively common event in crab-eating macaques that survived infection after antiviral treatment. Persistence triggers severe testicular damage, including spermatogenic cell depletion and inflammatory cell invasion. MARV mainly persists in Sertoli cells, leading to breakdown of the blood-testis barrier formed by inter-Sertoli cell tight junctions. This disruption is accompanied by local infiltration of immunosuppressive CD4+Foxp3+ regulatory T cells. Our study elucidates cellular events associated with testicular persistence that may promote sexual transmission of filoviruses and suggests that targeting immunosuppression may be warranted to clear filovirus persistence in damaged immune-privileged sites.

Recommendations for determining HPV status in patients with oropharyngeal cancers under TNM8 guidelines: a two-tier approach

Br J Cancer

2019 Mar 20

Craig SG, Anderson LA, Schache AG, Moran M, Graham L, Currie K, Rooney K, Robinson M, Upile NS, Brooker R, Mesri M, Bingham V, McQuaid S, Jones T, McCance DJ, Salto-Tellez M, McDade SS and James JA
PMID: 30890775 | DOI: 10.1038/s41416-019-0414-9

BACKGROUND: TNM8 staging for oropharyngeal squamous cell carcinomas (OPSCC) surrogates p16 immunohistochemistry for HPV testing. Patients with p16+ OPSCC may lack HPV aetiology. Here, we evaluate the suitability of TNM8 staging for guiding prognosis in such patients. METHODS: HPV status was ascertained using p16 immunohistochemistry and high-risk HPV RNA and DNA in situ hybridisation. Survival by stage in a cohort of OPSCC patients was evaluated using TNM7/TNM8 staging. Survival of p16+/HPV- patients was compared to p16 status. RESULTS: TNM8 staging was found to improve on TNM7 (log rank p = 0.0190 for TNM8 compared with p = 0.0530 for TNM7) in p16+ patients. Patients who tested p16+ but were HPV- (n = 20) had significantly reduced five-year survival (33%) compared to p16+ patients (77%) but not p16- patients (35%). Cancer stage was reduced in 95% of p16+/HPV- patients despite having a mortality rate twice (HR 2.66 [95% CI: 1.37-5.15]) that of p16+/HPV+ patients under new TNM8 staging criteria. CONCLUSION: Given the significantly poorer survival of p16+/HPV- OPSCCs, these data provide compelling evidence for use of an HPV-specific test for staging classification. This has particular relevance in light of potential treatment de-escalation that could expose these patients to inappropriately reduced treatment intensity as treatment algorithms evolve.
Human Papillomavirus-Related Multiphenotypic Sinonasal Carcinoma: A Case Report Documenting the Potential for Very Late Tumor Recurrence.

Head Neck Pathol.

2018 Feb 14

Shah AA, Lamarre ED, Bishop JA.
PMID: 29445997 | DOI: 10.1007/s12105-018-0895-5

Human papillomavirus (HPV)-related multiphenotypic sinonasal carcinoma is a peculiar sinonasal tract tumor that demonstrates features of both a surface-derived and salivary gland carcinoma. Implicit in its name, this tumor has a consistent association with high-risk HPV, particularly type 33. It was first described in 2013 under the designation of HPV-related carcinoma with adenoid cystic carcinoma-like features. However, since its initial description additional cases have emerged which demonstrate a wide morphologic spectrum and relatively indolent clinical behavior. Herein we report our experience with a case of HPV-related multiphenotypic sinonasal carcinoma that was initially classified as adenoid cystic carcinoma in the 1980s. The patient recurred after a 30-year disease free interval. RNA in situ hybridization confirmed the presence of high-risk HPV in both her recurrence and her initial tumor in the 1980s, which allowed for reclassification as HPV-related multiphenotypic sinonasal carcinoma. Our case adds to the literature of this relatively newly described entity and supports the indolent clinical behavior of this neoplasm but also demonstrates a potential for very late local recurrence.

Analysis of Cytokine Gene Expression using a Novel Chromogenic In-situ Hybridization Method in Pulmonary Granulomas of Cattle Infected Experimentally by Aerosolized Mycobacterium bovis.

J Comp Pathol. 2015 Jul 16.

Palmer MV, Thacker TC, Waters WR.
PMID: 26189773 | DOI: 10.1016/j.jcpa.2015.06.004.

Mycobacterium bovis is the cause of tuberculosis in most animal species including cattle and is a serious zoonotic pathogen. In man, M. bovis infection can result in disease clinically indistinguishable from that caused by Mycobacterium tuberculosis, the cause of most human tuberculosis. Regardless of host, the typical lesion induced by M. bovis or M. tuberculosis is the tuberculoid granuloma. Tuberculoid granulomas are dynamic structures reflecting the interface between host and pathogen and, therefore, pass through various morphological stages (I to IV). Using a novel in-situ hybridization assay, transcription of various cytokine and chemokine genes was examined qualitatively and quantitatively using image analysis. In experimentally infected cattle, pulmonary granulomas of all stages were examined 150 days after aerosol exposure to M. bovis. Expression of mRNA encoding tumour necrosis factor (TNF)-α, transforming growth factor-β, interferon (IFN)-γ, interleukin (IL)-17A, IL-16, IL-10, CXCL9 and CXCL10 did not differ significantly between granulomas of different stages. However, relative expression of the various cytokines was characteristic of a Th1 response, with high TNF-α and IFN-γ expression and low IL-10 expression. Expression of IL-16 and the chemokines CXCL9 and CXCL10 was high, suggestive of granulomas actively involved in T-cell chemotaxis.
Multinucleated giant cell cytokine expression in pulmonary granulomas of cattle experimentally infected with Mycobacterium bovis.

Veterinary Immunology and Immunopathology

2016 Aug 31

Palmer MV , Thacker TC, Waters WR.
PMID: - | DOI: 10.1016/j.vetimm.2016.08.015

Regardless of host, pathogenic mycobacteria of the Mycobacterium tuberculosiscomplex such as Mycobacterium bovis, induce a characteristic lesion known as agranuloma, tubercle or tuberculoid granuloma. Granulomas represent a distinct host response to chronic antigenic stimuli, such as foreign bodies, certain bacterial components, or persistent pathogens such as M. bovis. Granulomas are composed of specific cell types including epithelioid macrophages, lymphocytes and a morphologically distinctive cell type, the multinucleated giant cell. Multinucleated giant cells are formed by the fusion of multiple macrophages; however, their function remains unclear. In humans, giant cells in tuberculous granulomas have been shown to express various cytokines, chemokines and enzymes important to the formation and maintenance of the granuloma. The objective of this study was to quantitatively assess multinucleated giant cell cytokine expression in bovine tuberculoid granulomas; focusing on cytokines of suspected relevance to bovine tuberculosis. Using calves experimentally infected with M. bovis, in situ cytokine expression was quantitatively assessed using RNAScope® for the following cytokines TNF-α, IFN-γ, TGF-β, IL-17A and IL-10. Multinucleated giant cells in bovine tuberculoid granulomas expressed all examined cytokines to varying degrees, with differential expression of TGF-β, IL-17A and IL-10 in giant cells from early versus late stage granulomas. There was a modest, positive correlation between the level of cytokine expression and cell size or number of nuclei. These results suggest that multinucleated giant cells are active participants within bovine tuberculoid granulomas, contributing to the cytokine milieu necessary to form and maintain granulomas.

Differential Cytokine Gene Expression in Granulomas from Lungs and Lymph Nodes of Cattle Experimentally Infected with Aerosolized Mycobacterium bovis.

PLoS One.

2016 Nov 30

Palmer MV, Thacker TC, Waters WR.
PMID: 27902779 | DOI: 10.1371/journal.pone.0167471

The hallmark lesion of tuberculosis in humans and animals is the granuloma. The granuloma represents a distinct host cellular immune response composed of epithelioid macrophages, lymphocytes, and multinucleated giant cells, often surrounding a caseous necrotic core. Within the granuloma, host-pathogen interactions determine disease outcome. Factors within the granulomas such as cytokines and chemokines drive cell recruitment, activity, function and ultimately the success or failure of the host's ability to control infection. Hence, an understanding of the granuloma-level cytokine response is necessary to understand tuberculosis pathogenesis. In-situ cytokine expression patterns were measured using a novel in situ hybridization assay, known as RNAScope® in granulomas of the lungs, tracheobronchial lymph nodes and caudal mediastinal lymph nodes of cattle experimentally infected with Mycobacterium bovis via aerosol exposure. In spite of microscopic morphological similarities, significant differences were seen between late stage granulomas of the lung compared to those of the tracheobronchial lymph nodes for IL-17A, IFN-γ, TGF-β, IL10 and IL-22 but not for TNF-α. Additionally, significant differences were noted between granulomas from two different thoracic lymph nodes that both receive afferent lymphatics from the lungs (i.e., tracheobronchial and caudal mediastinal lymph nodes) for TNF-α, IL-17A, IFN-γ, TGF-β and IL-10 but not for IL-22. These findings show that granuloma morphology alone is not a reliable indicator of granuloma function as granulomas of similar morphologies can have disparate cytokine expression patterns. Moreover, anatomically distinct lymph nodes (tracheobronchial vs caudal mediastinal) differ in cytokine expression patterns even when both receive afferent lymphatics from a lung containing tuberculoid granulomas. These findings show that selection of tissue and anatomic location are critical factors in assessing host immune response to M. bovis and should be considered carefully.

Nonuniform Distribution of High-risk Human Papillomavirus in Squamous Cell Carcinomas of the Oropharynx

Am J Surg Pathol.

2017 Dec 01

Gelwan E, Malm IJ, Khararjian A, Fakhry C, Bishop JA, Westra WH.
PMID: 28877058 | DOI: 10.1097/PAS.0000000000000929

The oral cavity and oropharynx have historically been viewed as a single anatomic compartment of the head and neck. The practice of combining the oral cavity and oropharynx has recently been revised, largely owing to the observation that human papillomavirus (HPV)-related carcinogenesis has a strong predilection for the oropharynx but not the oral cavity. The purpose of this study was to determine whether HPV is evenly distributed across squamous cell carcinomas of the oropharynx including those sites that do not harbor tonsillar tissues such as the soft palate. A search of the medical records of the Johns Hopkins Hospital identified 32 primary squamous cell carcinomas of the soft palate (n=31) and posterior pharyngeal wall (n=1). All were evaluated with p16 immunohistochemistry and high-risk HPV in situ hybridization (ISH) (29 by RNA ISH and 3 by DNA ISH). For comparison, we also reviewed the medical records to obtain the HPV status of patients who had undergone HPV testing of primary tonsillar carcinomas over the same time interval as part of their clinical care. High-risk HPV as detected by ISH was present in just 1 (3.1%) of the 32 oropharyngeal squamous cell carcinomas, including 1 of 2 p16-positive carcinomas. The difference in HPV detection rates between tonsillar and nontonsillar sites was significant (1/32, 3.1% vs. 917/997, 92%; P<0.0001). HPV is not frequently detected in squamous cell carcinomas arising from nontonsillar regions of the oropharynx. Indeed, squamous cell carcinomas of the soft palate more closely resemble those arising in the oral cavity than those arising in areas of the oropharynx harboring tonsillar tissue. This finding not only further sharpens our understanding of site-specific targeting by HPV, but may have practical implications regarding HPV testing and even the way the oral vault is oncologically compartmentalized to partition HPV-positive from HPV-negative cancers.

Oral Human Papillomavirus Infection and Head and Neck Squamous Cell Carcinoma in Rural Northwest Cameroon.

SAGE Publications (2019)

2019 Jan 04

Rettig EM, Gooi Z, Bardin R, Bogale M, Rooper L, Acha E, Koch WM.
| DOI: 10.1177/2473974X18818415

Abstract Objective. Oral human papillomavirus (HPV) infection is the precursor for a growing subset of oropharyngeal squamous cell carcinomas (OPSCCs) in the developed world. This study was designed to characterize oral HPV infection and OPSCC in a region with high rates of HPV-driven cervical cancer. Study Design. Cross-sectional cohort study, retrospective case series. Setting. Northwest Cameroon referral hospital. Subjects and Methods. Individuals infected with human immunodeficiency virus attending an outpatient clinic were evaluated for oral HPV infection with oral swabs or rinses that were tested for 51 HPV types. HNSCCs diagnosed and/or treated at the same hospital from 2011 to 2017 were retrospectively reviewed to ascertain demographic and tumor characteristics, and available OPSCCs were tested for HPV. Results. The oral HPV infection study population comprised 101 participants. Most (69%) were female and neversmokers (84%). Participants had median 4 lifetime sexual partners (interquartile range, 3-7; range, 1-100). Five participants (5%) had oral HPV infection; one had 2 HPV types. HPV types detected were HPV68 (n = 2), HPV82 (n = 2), HPV32 (n = 1), and unknown (n = 1). No significant demographic or behavioral differences were detected among individuals with vs without oral HPV infection. OPSCCs comprised just 8% (n = 11) of 131 HNSCCs in the retrospective study population. Two of 7 OPSCCs were HPV positive. Conclusion. The low prevalence of OPSCC observed in northwest Cameroon together with the rarity of oral HPV infection suggests low rates of HPV-driven oropharyngeal carcinogenesis in the region. Future research should examine how geographic differences in oral HPV infection are influenced by cultural norms and affect HPV-OPSCC epidemiology
Early Pulmonary Lesions in Cattle Infected via Aerosolized Mycobacterium bovis

Vet Pathol

2019 Mar 21

Palmer MV, Wiarda J, Kanipe C and Thacker TC
PMID: 30895908 | DOI: 10.1177/0300985819833454

Mycobacterium bovis is a serious zoonotic pathogen and the cause of tuberculosis in many mammalian species, most notably, cattle. The hallmark lesion of tuberculosis is the granuloma. It is within the developing granuloma where host and pathogen interact; therefore, it is critical to understand host-pathogen interactions at the granuloma level. Cytokines and chemokines drive cell recruitment, activity, and function and ultimately determine the success or failure of the host to control infection. In calves, early lesions (ie, 15 and 30 days) after experimental aerosol infection were examined microscopically using in situ hybridization and immunohistochemistry to demonstrate early infiltrates of CD68+ macrophages within alveoli and alveolar interstitium, as well as the presence of CD4, CD8, and gammadelta T cells. Unlike lesions at 15 days, lesions at 30 days after infection contained small foci of necrosis among infiltrates of macrophages, lymphocytes, neutrophils, and multinucleated giant cells and extracellular acid-fast bacilli within necrotic areas. At both time points, there was abundant expression of the chemokines CXCL9, MCP-1/CCL2, and the cytokine transforming growth factor (TGF)-beta. The proinflammatory cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta, as well as the anti-inflammatory cytokine IL-10, were expressed at moderate levels at both time points, while expression of IFN-gamma was limited. These findings document the early pulmonary lesions after M. bovis infection in calves and are in general agreement with the proposed pathogenesis of tuberculosis described in laboratory animal and nonhuman primate models of tuberculosis.
Morphoproteomics, E6/E7 in-situ hybridization, and biomedical analytics define the etiopathogenesis of HPV-associated oropharyngeal carcinoma and provide targeted therapeutic options.

J Otolaryngol Head Neck Surg.

2017 Aug 17

Brown RE, Naqvi S, McGuire MF, Buryanek J, Karni RJ.
PMID: 28818106 | DOI: 10.1186/s40463-017-0230-2

Abstract

BACKGROUND:

Human papillomavirus (HPV) has been identified as an etiopathogenetic factor in oropharyngeal squamous cell carcinoma. The HPV E6 and E7 oncogenes are instrumental in promoting proliferation and blocking differentiation leading to tumorigenesis. Although surgical intervention can remove such tumors, the potential for an etiologic field effect with recurrent disease is real. A downstream effector of E7 oncoprotein, enhancer of zeste homolog 2 (EZH2), is known to promote proliferation and to pose a block in differentiation and in turn, could lead to HPV-induced malignant transformation. However, the EZH2 pathway is amenable to low toxicity therapies designed to promotedifferentiation to a more benign state and prevent recurrent disease by inhibiting the incorporation of HPV into the genome. This is the first study using clinical specimens to demonstrate EZH2 protein expression in oropharyngeal carcinoma (OPC).

METHODS:

The study included eight patients with oropharyngeal carcinoma, confirmed p16INK4a- positive by immunohistochemistry (IHC). The tissue expression of E6/E7 messenger RNA (mRNA) was measured by RNAscope™ in-situ hybridization technology. Expression of EZH2, Ki-67, and mitotic indices were assessed by morphoproteomic analysis. Biomedical analytics expanded the results with data from Ingenuity Pathway Analysis (IPA) and KEGG databases to construct a molecular network pathway for further insights.

RESULTS:

Expression of E6 and E7 oncogenes in p16INK4a- positive oropharyngeal carcinoma was confirmed. EZH2 and its correlates, including elevated proliferation index (Ki-67) and mitotic progression were also present. Biomedical analytics validated the relationship between HPV- E6 and E7 and the expression of the EZH2 pathway.

CONCLUSION:

There is morphoproteomic and mRNA evidence of the association of p16INK4a-HPV infection with the E6 and E7 oncogenes and the expression of EZH2, Ki-67 and mitotic progression in oropharyngeal carcinoma. The molecular network biology was confirmed by biomedical analytics as consistent with published literature. This is significant because the biology lends itself to targeted therapeutic options using metformin, curcumin, celecoxib and sulforaphane as therapeutic strategies to prevent progression or recurrence of disease.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?