ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Virol.
2018 Aug 15
Lindquist ME, Zeng X, Altamura LA, Daye SP, Delp KL, Blancett C, Coffin KM, Koehler JW, Coyne S, Shoemaker CJ, Garrison AR, Golden JW.
PMID: 30111561 | DOI: 10.1128/JVI.01083-18
Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hepatic injury in humans. However, the mechanism(s) causing this damage are poorly characterized. CCHFV produces an acute disease, including liver damage, in mice lacking type I interferon signaling (IFN-I) either due to STAT-1 gene deletion or disruption of the IFN-I receptor 1 gene. Here, we explored CCHFV-induced liver pathogenesis in mice using an antibody to disrupt IFN-I signaling. When IFN-I blockade was induced within 24 h post-exposure to CCHFV, mice developed severe disease with greater than 95% mortality by six days post-exposure. In addition, we observed increased proinflammatory cytokines, chemoattractants, and liver enzymes in these mice. Extensive liver damage was evident by 4 days post-exposure and was characterized by hepatocyte necrosis and loss of CLEC4F-positive Kupffer cells. Similar experiments in CCHFV-exposed NOD-SCID-γ (NSG), Rag2-deficient, and perforin-deficient mice also demonstrated liver injury, suggesting cytotoxic immune cells are dispensable for hepatic damage. Some apoptotic liver cells contained viral RNA while other apoptotic liver cells were negative, suggesting that cell death occurred by both intrinsic and extrinsic mechanisms. Protein and transcriptional analysis of livers revealed that activation of TNF superfamily members occurred by day four post-exposure, implicating these molecules as factors in liver cell death. These data provide insights into CCHFV-induced hepatic injury and demonstrate the utility of antibody-mediated IFN-I blockade in the study of CCHFV pathogenesis in mice.IMPORTANCE CCHFV is an important human pathogen that is both endemic and emerging throughout Asia, Africa and Europe. A common feature of acute disease is liver injury ranging from mild to fulminant hepatic failure. The processes through which CCHFV induces severe liver injury are unclear, mostly due to the limitations of existing small animal systems. The only small animal model in which CCHFV consistently produces severe liver damage are mice lacking IFN-I signaling. In this study, we used antibody-mediated blockade of IFN-I signaling in mice to study CCHFV liver pathogenesis in various transgenic mouse systems. We found liver injury did not depend on cytotoxic immune cells and observed extensive activation of death receptor signaling pathways in the liver during acute disease. Furthermore, acute CCHFV infection resulted in a near complete loss of Kupffer cells. Our model system provides insight into both the molecular and cellular features of CCHFV hepatic injury.
JCI Insight.
2018 Sep 20
Samal J, Kelly S, Na-Shatal A, Elhakiem A, Das A, Ding M, Sanyal A, Gupta P, Melody K, Roland B, Ahmed W, Zakir A, Bility M.
PMID: 30232273 | DOI: 10.1172/jci.insight.120430
A major pathogenic feature associated with HIV infection is lymphoid fibrosis, which persists during antiretroviral therapy (ART). Lymphoid tissues play critical roles in the generation of antigen-specific immune response, and fibrosis disrupts the stromal network of lymphoid tissues, resulting in impaired immune cell trafficking and function, as well as immunodeficiency. Developing an animal model for investigating the impact of HIV infection-induced lymphoid tissue fibrosis on immunodeficiency and immune cell impairment is critical for therapeutics development and clinical translation. Said model will enable in vivo mechanistic studies, thus complementing the well-established surrogate model of SIV infection-induced lymphoid tissue fibrosis in macaques. We developed a potentially novel human immune system-humanized mouse model by coengrafting autologous fetal thymus, spleen, and liver organoids under the kidney capsule, along with i.v. injection of autologous fetal liver-derived hematopoietic stem cells, thus termed the BM-liver-thymus-spleen (BLTS) humanized mouse model. BLTS humanized mouse model supports development of human immune cells and human lymphoid organoids (human thymus and spleen organoids). HIV infection in BLTS humanized mice results in progressive fibrosis in human lymphoid tissues, which was associated with immunodeficiency in the lymphoid tissues, and lymphoid tissue fibrosis persists during ART, thus recapitulating clinical outcomes.
Mediators of Inflammation
2015 Nov 15
Christensen AB, Dige A, Vad-Nielsen J, Brinkmann CR, Bendix M, Østergaard L, Tolstrup M, Søgaard OS, Rasmussen TA, Nyengaard JR, Agnholt J, Denton PW.
PMID: - | DOI: http://dx.doi.org/10.1155/2015/120605
Intestinal CD4+ T cell depletion is rapid and profound during early HIV-1 infection. This leads to a compromised mucosal barrier that prompts chronic systemic inflammation. The preferential loss of intestinal T helper 17 (Th17) cells in HIV-1 disease is a driver of the damage within the mucosal barrier and of disease progression. Thus, understanding the effects of new therapeutic strategies in the intestines has high priority. Histone deacetylase (HDAC) inhibitors (e.g., panobinostat) are actively under investigation as potential latency reversing agents in HIV eradication studies. These drugs have broad effects that go beyond reactivating virus, including modulation of immune pathways. We examined colonic biopsies from ART suppressed HIV-1 infected individuals (clinicaltrials.gov: NCT01680094) for the effects of panobinostat on intestinal T cell activation and on inflammatory cytokine production. We compared biopsy samples that were collected before and during oral panobinostat treatment and observed that panobinostat had a clear biological impact in this anatomical compartment. Specifically, we observed a decrease in CD69+ intestinal lamina propria T cell frequency and increased IL-17A mRNA expression in the intestinal epithelium. These results suggest that panobinostat therapy may influence the restoration of mucosal barrier function in these patients.
J Neuroimmune Pharmacol.
2018 Sep 07
Ko A, Kang G, Hattler JB, Galadima HI, Zhang J, Li Q, Kim WK.
PMID: 30194646 | DOI: 10.1007/s11481-018-9809-2
The question of whether the human brain is an anatomical site of persistent HIV-1 infection during suppressive antiretroviral therapy (ART) is critical, but remains unanswered. The presence of virus in the brains of HIV patients whose viral load is effectively suppressed would demonstrate not only the potential for CNS to act as an anatomical HIV reservoir, but also the urgent need to understand the factors contributing to persistent HIV behind the blood-brain barrier. Here, we investigated for the first time the presence of cells harboring HIV DNA and RNA in the brains from subjects with undetectable plasma viral load and sustained viral suppression, as identified by the National NeuroAIDS Tissue Consortium. Using new, highly sensitive in situ hybridization techniques, RNAscope and DNAscope, in combination with immunohistochemistry, we were able to detect HIV-1 in the brains of all virally suppressed cases and found that brain macrophages and microglia, but not astrocytes, were the cells harboring HIV DNA in the brain. This study demonstrated that HIV reservoirs persist in brain macrophages/microglia during suppressive ART, which cure/treatment strategies will need to focus on targeting.
PLoS pathogens
2022 May 01
Golden, JW;Zeng, X;Cline, CR;Smith, JM;Daye, SP;Carey, BD;Blancett, CD;Shoemaker, CJ;Liu, J;Fitzpatrick, CJ;Stefan, CP;Garrison, AR;
PMID: 35587473 | DOI: 10.1371/journal.ppat.1010485
Front. Microbiol.
2018 Sep 14
Zhang W, Akusjärvi SS, Sönnerborg A, Neogi U.
PMID: - | DOI: 10.3389/fmicb.2018.02358
Identifying the source and dynamics of persistent HIV-1 at single-cell resolution during cART is crucial for the design of strategies to eliminate the latent HIV-1 reservoir. An assay to measure latent HIV-1 that can distinguish inducible from defective proviruses with high precision is essential to evaluate the efficacy of HIV-1 cure efforts but is presently lacking. The primary aim of this study was therefore to identify transcription and translation competent latently infected cells through detection of biomolecules that are dependent on transcriptional activation of the provirus. We investigated the applicability of two commercially available assays; PrimeFlowTM RNA Assay (RNAflow) and RNAscope™ ISH (RNAscope) for evaluation of the efficacy of latency reversal agents (LRAs) to reactivate the HIV-1 latent reservoir. The J-Lat cell model (clones 6.3, 9.3, and 10.6) and four LRAs was used to evaluate the sensitivity, specificity, and lower detection limit of the RNAflow and RNAscope assays for the detection and description of the translation-competent HIV-1 reservoir. We also checked for HIV-1 subtype specificity of the RNAscope assay using patient-derived subtype A1, B, C, and CRF01_AE recombinant plasmids following transfection in 293T cells and the applicability of the method in patient-derived peripheral blood mononuclear cells (PBMCs). The lower detection limit of RNAflow was 575 HIV-1 infected cells/million and 45 cells/million for RNAscope. The RNAscope probes, designed for HIV-1B, also detected other subtypes (A1, B, C, and CRF01_AE). RNAscope was applicable for the detection of HIV-1 in patient-derived PBMCs following LRA activation. In conclusion, our study showed that RNAscope can be used to quantify the number of directly observed individual cells expressing HIV-1 mRNA following LRA activation. Therefore, it can be a useful tool for characterization of translation-competent HIV-1 in latently infected cell at single-cell resolution in the fields of HIV-1 pathogenesis and viral persistence.
Nat Microbiol.
2018 Apr 09
Haddock E, Feldmann F, Hawman DW, Zivcec M, Hanley PW, Saturday G, Scott DP, Thomas T, Korva M, Avšič -Županc T, Safronetz D, Feldmann H.
PMID: 29632370 | DOI: 10.1038/s41564-018-0141-7
Crimean-Congo haemorrhagic fever (CCHF) is the most medically significant tick-borne disease, being widespread in the Middle East, Asia, Africa and parts of Europe 1 . Increasing case numbers, westerly movement and broadly ranging case fatality rates substantiate the concern of CCHF as a public health threat. Ixodid ticks of the genus Hyalomma are the vector for CCHF virus (CCHFV), an arbovirus in the genus Orthonairovirus of the family Nairoviridae. CCHFV naturally infects numerous wild and domestic animals via tick bite without causing obvious disease2,3. Severe disease occurs only in humans and transmission usually happens through tick bite or contact with infected animals or humans. The only CCHF disease model is a subset of immunocompromised mice4-6. Here, we show that following CCHFV infection, cynomolgus macaques exhibited hallmark signs of human CCHF with remarkably similar viral dissemination, organ pathology and disease progression. Histopathology showed infection of hepatocytes, endothelial cells and monocytes and fatal outcome seemed associated with endothelial dysfunction manifesting in a clinical shock syndrome with coagulopathy. This non-human primate model will be an invaluable asset for CCHFV countermeasures development.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com