ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Hepatology (Baltimore, Md.)
2022 Jun 19
Zhao, K;Guo, F;Wang, J;Zhong, Y;Yi, J;Teng, Y;Xu, Z;Zhao, L;Li, A;Wang, Z;Chen, X;Cheng, X;Xia, Y;
PMID: 35718932 | DOI: 10.1002/hep.32622
Emerg Infect Dis.
2016 Dec 15
Vergara-Alert J, van den Brand JM, Widagdo W, Muñoz M 5th, Raj S, Schipper D, Solanes D, Cordón I, Bensaid A, Haagmans BL, Segalés J.
PMID: 27901465 | DOI: 10.3201/eid2302.161239
Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible.
Gut
2017 Apr 20
Allweiss L, Volz T, Giersch K, Kah J, Raffa G, Petersen J, Lohse AW, Beninati C, Pollicino T, Urban S, Lütgehetmann M, Dandri M.
PMID: 28428345 | DOI: 10.1136/gutjnl-2016-312162
Viruses
2022 Mar 08
Bustamante-Jaramillo, LF;Fingal, J;Blondot, ML;Rydell, GE;Kann, M;
PMID: 35336964 | DOI: 10.3390/v14030557
Hepatology communications
2023 Apr 01
Zhang, H;Zhang, M;Zhang, Q;Yu, Y;Zhang, F;Wang, J;Zhou, M;Yu, T;Shen, C;Yu, S;Huang, Y;Huang, Y;Zhang, J;Jin, J;Qiu, C;Guojun, L;Zhang, W;
PMID: 36995994 | DOI: 10.1097/HC9.0000000000000111
J Virol.
2018 Jul 18
Xia Y, Cheng X, Li Y, Valdez K, Chen W, Liang TJ.
PMID: 30021897 | DOI: 10.1128/JVI.00722-18
Hepatitis B virus (HBV) infection is a major health problem worldwide and chronically infected individuals are at high risk of developing cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms whereby HBV causes HCC are largely unknown. By using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expressions and signaling pathways of infected hepatocytes, and whether these effects are relevant to productive HBV infection and HBV-associated HCC. Using a human growth factor antibody array, we first showed that HBV infection induced a distinct profile of growth factor production by PHHs, marked particularly by significantly lower levels of transforming growth factor (TGF)-β family of proteins in the supernatant. Transcriptome profiling next revealed multiple changes in cell proliferation and cell cycle control pathways in response to HBV infection. A human cell cycle PCR array validated deregulation of more than 20 gene associated with cell cycle in HBV-infected PHHs. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase as compared to the predominantly G0/G1 phase of cultured PHHs. HBV proviral host factors, such as PPARA, RXRA and CEBPB, were up-regulated upon HBV infection and particularly enriched in cells at the G2/M phase. Together, these results support that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive HBV infection. By perturbing cell cycle regulation of infected cells, HBV may coincidently induce a premalignant phenotype that predispose infected hepatocytes to subsequent malignant transformation.IMPORTANCE Hepatitis B virus (HBV) infection is a major health problem with high risk of developing hepatocellular carcinoma (HCC). By using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expressions, and whether these effects are relevant to HBV-associated HCC. HBV induced a distinct profile of growth factor production, marked particularly by significantly lower levels of transforming growth factor (TGF)-β family of proteins. Transcriptome profiling revealed multiple changes in cell proliferation and cell cycle control pathways. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase. HBV proviral host factors were up-regulated upon infection and particularly enriched in cells at the G2/M phase. Together, these results support that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive infection. This may coincidently induce a premalignant phenotype that predispose infected hepatocytes to subsequent malignant transformation.
Nature communications
2022 May 30
Biswas, S;Rust, LN;Wettengel, JM;Yusova, S;Fischer, M;Carson, JN;Johnson, J;Wei, L;Thode, T;Kaadige, MR;Sharma, S;Agbaria, M;Bimber, BN;Tu, T;Protzer, U;Ploss, A;Smedley, JV;Golomb, G;Sacha, JB;Burwitz, BJ;
PMID: 35637225 | DOI: 10.1038/s41467-022-30593-0
J Virol. 2015 Mar 25.
Haagmans BL, van den Brand JM, Provacia LB, Raj VS, Stittelaar KJ, Getu S, de Waal L, Bestebroer TM, van Amerongen G, Verjans GM, Fouchier RA, Smits SL, Thijs K, Osterhaus AD.
Science
2015 Dec 18
Haagmans BL, van den Brand JMA, Stalin Raj V, Volz A, Wohlsein P, Smits SL, Schipper D, Bestebroer TM, Okba N, Fux R, Bensaid A, Solanes Foz D, Kuiken T, Baumgärtner W, Segalés J, Sutter G, Osterhaus ADME.
PMID: - | DOI: 10.1126/science.aad1283
Middle East respiratory syndrome coronavirus (MERS-CoV) infections cause an ongoing outbreak in humans fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. Besides implementing hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here, we show that a modified vaccinia virus Ankara (MVA) virus vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Significant reduction of excreted infectious virus and viral RNA transcripts was observed in vaccinated animals upon MERS-CoV challenge as compared to controls. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus, would also provide protection against camelpox.
Journal of Korean Medical Science
2016 Mar 10
Cha RH, Yang SH, Moon KC, Joh JS, Lee JY, Shin HS, Kim DK, Kim YS.
PMID: - | DOI: 10.3346/jkms.2016.31.4.635
A 68-year old man diagnosed with Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) presented with multiple pneumonic infiltrations on his chest X-ray, and the patient was placed on a mechanical ventilator because of progressive respiratory failure. Urinary protein excretion steadily increased for a microalbumin to creatinine ratio of 538.4 mg/g Cr and a protein to creatinine ratio of 3,025.8 mg/g Cr. The isotope dilution mass spectrometry traceable serum creatinine level increased to 3.0 mg/dL. We performed a kidney biopsy 8 weeks after the onset of symptoms. Acute tubular necrosis was the main finding, and proteinaceous cast formation and acute tubulointerstitial nephritis were found. There were no electron dense deposits observed with electron microscopy. We could not verify the virus itself by in situ hybridization and confocal microscopy (MERS-CoV co-stained with dipeptidyl peptidase 4). The viremic status, urinary virus excretion, and timely kidney biopsy results should be investigated with thorough precautions to reveal the direct effects of MERS-CoV with respect to renal complications.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com