Roszyk, H;Franzke, K;Breithaupt, A;Deutschmann, P;Pikalo, J;Carrau, T;Blome, S;Sehl-Ewert, J;
| DOI: 10.3390/v14010031
African swine fever (ASF) has evolved from an exotic animal disease to a threat to global pig production. An important avenue for the wide-spread transmission of animal diseases is their dissemination through boar semen used for artificial insemination. In this context, we investigated the role of male reproductive organs in the transmission of ASF. Mature domestic boars and adolescent wild boars, inoculated with different ASF virus strains, were investigated by means of virological and pathological methods. Additionally, electron microscopy was employed to investigate in vitro inoculated sperm. The viral genome, antigens and the infectious virus could be found in all gonadal tissues and accessory sex glands. The viral antigen and viral mRNAs were mainly found in mononuclear cells of the respective tissues. However, some other cell types, including Leydig, endothelial and stromal cells, were also found positive. Using RNAScope, p72 mRNA could be found in scattered halo cells of the epididymal duct epithelium, which could point to the disruption of the barrier. No direct infection of spermatozoa was observed by immunohistochemistry, or electron microscopy. Taken together, our results strengthen the assumption that ASFV can be transmitted via boar semen. Future studies are needed to explore the excretion dynamics and transmission efficiency.
Mao, Q;Chu, S;Shapiro, S;Young, L;Russo, M;De Paepe, ME;
PMID: 34929459 | DOI: 10.1016/j.placenta.2021.12.002
Recent evidence supports the - rare - occurrence of vertical transplacental SARS-CoV-2 transmission. We previously determined that placental expression of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor, and associated viral cell entry regulators is upregulated by hypoxia. In the present study, we utilized a clinically relevant model of SARS-CoV-2-associated chronic histiocytic intervillositis/massive perivillous fibrin deposition (CHIV/MPFVD) to test the hypothesis that placental hypoxia may facilitate placental SARS-CoV-2 infection.We performed a comparative immunohistochemical and/or RNAscope in-situ hybridization analysis of carbonic anhydrase IX (CAIX, hypoxia marker), ACE2 and SARS-CoV-2 expression in free-floating versus fibrin-encased chorionic villi in a 20-weeks' gestation placenta with SARS-CoV-2-associated CHIV/MPVFD.The levels of CAIX and ACE2 immunoreactivity were significantly higher in trophoblastic cells of fibrin-encased villi than in those of free-floating villi, consistent with hypoxia-induced ACE2 upregulation. SARS-CoV-2 showed a similar preferential localization to trophoblastic cells of fibrin-encased villi.The localization of SARS-CoV-2 to hypoxic, fibrin-encased villi in this placenta with CHIV/MPVFD suggests placental infection and, therefore, transplacental SARS-CoV-2 transmission may be promoted by hypoxic conditions, mediated by ACE2 and similar hypoxia-sensitive viral cell entry mechanisms. Understanding of a causative link between placental hypoxia and SARS-CoV-2 transmittability may potentially lead to the development of alternative strategies for prevention of intrauterine COVID-19 transmission.
McDonald, JT;Enguita, FJ;Taylor, D;Griffin, RJ;Priebe, W;Emmett, MR;Sajadi, MM;Harris, AD;Clement, J;Dybas, JM;Aykin-Burns, N;Guarnieri, JW;Singh, LN;Grabham, P;Baylin, SB;Yousey, A;Pearson, AN;Corry, PM;Saravia-Butler, A;Aunins, TR;Sharma, S;Nagpal, P;Meydan, C;Foox, J;Mozsary, C;Cerqueira, B;Zaksas, V;Singh, U;Wurtele, ES;Costes, SV;Davanzo, GG;Galeano, D;Paccanaro, A;Meinig, SL;Hagan, RS;Bowman, NM;UNC COVID-19 Pathobiology Consortium, ;Wolfgang, MC;Altinok, S;Sapoval, N;Treangen, TJ;Moraes-Vieira, PM;Vanderburg, C;Wallace, DC;Schisler, JC;Mason, CE;Chatterjee, A;Meller, R;Beheshti, A;
PMID: 34624208 | DOI: 10.1016/j.celrep.2021.109839
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.
Postmortem Cardiopulmonary Pathology in Patients with COVID-19 Infection: Single-Center Report of 12 Autopsies from Lausanne, Switzerland
Diagnostics (Basel, Switzerland)
Berezowska, S;Lefort, K;Ioannidou, K;Ndiaye, DR;Maison, D;Petrovas, C;Rotman, S;Piazzon, N;Milowich, D;Sala, N;Tsai, CY;Multone, E;Bochud, PY;Oddo, M;Bisig, B;de Leval, L;
PMID: 34441292 | DOI: 10.3390/diagnostics11081357
We report postmortem cardio-pulmonary findings including detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in formalin-fixed paraffin embedded tissue in 12 patients with COVID-19. The 5 women and 7 men (median age: 73 years; range 35-96) died 6-38 days after onset of symptoms (median: 14.5 days). Eight patients received mechanical ventilation. Ten patients showed diffuse alveolar damage (DAD), 7 as exudative and 3 as proliferative/organizing DAD. One case presented as acute fibrinous and organizing pneumonia. Seven patients (58%) had acute bronchopneumonia, 1/7 without associated DAD and 1/7 with aspergillosis and necrotic bronchitis. Microthrombi were present in 5 patients, only in exudative DAD. Reverse transcriptase quantitative PCR detected high virus amounts in 6 patients (50%) with exudative DAD and symptom-duration ≤14 days, supported by immunohistochemistry and in-situ RNA hybridization (RNAscope). The 6 patients with low viral copy levels were symptomatic for ≥15 days, comprising all cases with organizing DAD, the patient without DAD and one exudative DAD. We show the high prevalence of DAD as a reaction pattern in COVID-19, the high number of overlying acute bronchopneumonia, and high-level pulmonary virus detection limited to patients who died ≤2 weeks after onset of symptoms, correlating with exudative phase of DAD.
Evidence for residual SARS-CoV-2 in glioblastoma tissue of a convalescent patient
Lei, J;Liu, Y;Xie, T;Yao, G;Wang, G;Diao, B;Song, J;
PMID: 33994523 | DOI: 10.1097/WNR.0000000000001654
Since coronavirus disease 2019 (COVID-19) swept all over the world, several studies have shown the susceptibility of a patient with cancer to COVID-19. In this case, the removed glioblastoma multiforme (GBM)-adjacent (GBM-A), GBM-peritumor and GBM-central (GBM-C) tissues from a convalescent patient of COVID-19, who also suffered from glioblastoma meanwhile, together with GBM-A and GBM tissues from a patient without COVID-19 history as negative controls, were used for RNA ISH, electron microscopy observing and immunohistochemical staining of ACE2 and the virus antigen (N protein). The results of RNA ISH, electron microscopy observing showed that SARS-CoV-2 directly infects some cells within human GBM tissues and SARS-CoV-2 in GBM-C tissue still exists even when it is cleared elsewhere. Immunohistochemical staining of ACE2 and N protein showed that the expressions of ACE2 are significantly higher in specimens, including GBM-C tissue from COVID-19 patient than other types of tissue. The unique phenomenon suggests that the surgical protection level should be upgraded even if the patient is in a convalescent period and the pharyngeal swab tests show negative results. Furthermore, more attention should be paid to confirm whether the shelter-like phenomenon happens in other malignancies due to the similar microenvironment and high expression of ACE2 in some malignancies.
A single intranasal or intramuscular immunization with chimpanzee adenovirus vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters
Bricker, T;Darling, T;Hassan, A;Harastani, H;Soung, A;Jiang, X;Dai, Y;Zhao, H;Adams, L;Holtzman, M;Bailey, A;Case, J;Fremont, D;Klein, R;Diamond, M;Boon, A;
| DOI: 10.1016/j.celrep.2021.109400
The development of an effective vaccine against SARS-CoV-2, the etiologic agent of COVID-19, is a global priority. Here, we compared the protective capacity of intranasal and intramuscular delivery of a chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike protein (ChAd-SARS-CoV-2-S) in Golden Syrian hamsters. While immunization with ChAd-SARS-CoV-2-S induced robust spike protein specific antibodies capable of neutralizing the virus, antibody levels in serum were higher in hamsters vaccinated by an intranasal compared to intramuscular route. Accordingly, against challenge with SARS-CoV-2, ChAd-SARS-CoV-2-S immunized hamsters were protected against less weight loss and had reduced viral infection in nasal swabs and lungs, and reduced pathology and inflammatory gene expression in the lungs, compared to ChAd-Control immunized hamsters. Intranasal immunization with ChAd-SARS-CoV-2-S provided superior protection against SARS-CoV-2 infection and inflammation in the upper respiratory tract. These findings support intranasal administration of the ChAd-SARS-CoV-2-S candidate vaccine to prevent SARS-CoV-2 infection, disease, and possibly transmission.
Favipiravir (T-705) Protects IFNAR-/- Mice against Lethal Zika Virus Infection in a Sex-Dependent Manner
Matz, K;Emanuel, J;Callison, J;Gardner, D;Rosenke, R;Mercado-Hernandez, R;Williamson, BN;Feldmann, H;Marzi, A;
PMID: 34072604 | DOI: 10.3390/microorganisms9061178
Zika virus (ZIKV), a member of the Flaviviridae family, is an important human pathogen that has caused epidemics in Africa, Southeast Asia, and the Americas. No licensed treatments for ZIKV disease are currently available. Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) and ribavirin (1-(β-D-Ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide) are nucleoside analogs that have exhibited antiviral activity against a broad spectrum of RNA viruses, including some flaviviruses. In this study, we strengthened evidence for favipiravir and ribavirin inhibition of ZIKV replication in vitro. Testing in IFNAR-/- mice revealed that daily treatments of favipiravir were sufficient to provide protection against lethal ZIKV challenge in a dose-dependent manner but did not completely abrogate disease. Ribavirin, on the other hand, had no beneficial effect against ZIKV infection in this model and under the conditions examined. Combined treatment of ribavirin and favipiravir did not show improved outcomes over ribavirin alone. Surprisingly, outcome of favipiravir treatment was sex-dependent, with 87% of female but only 25% of male mice surviving lethal ZIKV infection. Since virus mutations were not associated with outcome, a sex-specific host response likely explains the observed sex difference.
Alkhurma Hemorrhagic Fever Virus causes lethal disease in IFNAR-/- mice
Emerging microbes & infections
Bhatia, B;Haddock, E;Shaia, C;Rosenke, R;Meade-White, K;Griffin, AJ;Marzi, A;Feldmann, H;
PMID: 34013842 | DOI: 10.1080/22221751.2021.1932609
AbstractAlkhurma hemorrhagic fever virus (AHFV), a tick-borne flavivirus closely related to Kyasanur Forest disease virus, is the causative agent of a severe, sometimes fatal hemorrhagic/encephalitic disease in humans. To date, there are no specific treatments or vaccine available to combat AHFV infections. A challenge for the development of countermeasures is the absence of a reliable AHFV animal disease model for efficacy testing. Here, we used mice lacking the type I interferon (IFN) receptor (IFNAR-/-). AHFV strains Zaki-2 and 2003 both caused uniform lethality in these mice after intraperitoneal injection, but strain 2003 seemed more virulent with a median lethal dose of 0.4 median tissue culture infectious doses (TCID50). Disease manifestation in this animal model was similar to case reports of severe human AHFV infections with early generalized signs leading to hemorrhagic and neurologic complications. AHFV infection resulted in early high viremia followed by high viral loads (<108 TCID50/g tissue) in all analyzed organs. Despite systemic viral replication, virus-induced pathology was mainly found in the spleen, lymph nodes, liver and heart. This uniformly lethal AHFV disease model will be instrumental for pathogenesis studies and countermeasure development against this neglected zoonotic pathogen.
SARS-CoV-2 infection induces protective immunity and limits transmission in Syrian hamsters
Selvaraj, P;Lien, CZ;Liu, S;Stauft, CB;Nunez, IA;Hernandez, M;Nimako, E;Ortega, MA;Starost, MF;Dennis, JU;Wang, TT;
PMID: 33574037 | DOI: 10.26508/lsa.202000886
A critical question in understanding the immunity to SARS-COV-2 is whether recovered patients are protected against re-challenge and transmission upon second exposure. We developed a Syrian hamster model in which intranasal inoculation of just 100 TCID50 virus caused viral pneumonia. Aged hamsters developed more severe disease and even succumbed to SARS-CoV-2 infection, representing the first lethal model using genetically unmodified laboratory animals. After initial viral clearance, the hamsters were re-challenged with 105 TCID50 SARS-CoV-2 and displayed more than 4 log reduction in median viral loads in both nasal washes and lungs in comparison to primary infections. Most importantly, re-challenged hamsters were unable to transmit virus to naïve hamsters, and this was accompanied by the presence of neutralizing antibodies. Altogether, these results show that SARS-CoV-2 infection induces protective immunity that not only prevents re-exposure but also limits transmission in hamsters. These findings may help guide public health policies and vaccine development and aid evaluation of effective vaccines against SARS-CoV-2.
Iwanaga, N;Cooper, L;Rong, L;Maness, NJ;Beddingfield, B;Qin, Z;Crabtree, J;Tripp, RA;Yang, H;Blair, R;Jangra, S;García-Sastre, A;Schotsaert, M;Sruti, C;Robinson, JE;Srivastava, A;Rabito, F;Qin, X;Kolls, JK;
PMID: 34957381 | DOI: 10.1016/j.isci.2021.103670
SARS-CoV-2, the etiologic agent of COVID-19, uses ACE2 as a cell entry receptor. Soluble ACE2 has been shown to have neutralizing antiviral activity but has a short half-life and no active transport mechanism from the circulation into the alveolar spaces of the lung. To overcome this, we constructed an ACE2-human IgG1 fusion protein with mutations in the catalytic domain of ACE2. A mutation in the catalytic domain of ACE2, MDR504, significantly increased binding to SARS-CoV-2 spike protein, as well as to a spike variant, in vitro with more potent viral neutralization in plaque assays. Parental administration of the protein showed stable serum concentrations with excellent bioavailability in the epithelial lining fluid of the lung, and ameliorated lung SARS-CoV-2 infection in vivo. These data support that the MDR504 hACE2-Fc is an excellent candidate for treatment or prophylaxis of COVID-19 and potentially emerging variants.
The \"Oral\" History of COVID-19: Primary Infection, Salivary Transmission, and Post-Acute Implications
Journal of periodontology
Marchesan, JT;Warner, BM;Byrd, KM;
PMID: 34390597 | DOI: 10.1002/JPER.21-0277
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to more than 3.25 million recorded deaths worldwide as of May 2021. COVID-19 is known to be clinically heterogeneous, and whether the reported oral signs and symptoms in COVID-19 are related to the direct infection of oral tissues has remained unknown. Here, we review and summarize the evidence for the primary infection of the glands, oral mucosae, and saliva by SARS-CoV-2. Not only were the entry factors for SARS-CoV-2 found in all oral tissues, but these were also sites of SARS-CoV-2 infection and replication. Furthermore, saliva from asymptomatic individuals contained free virus and SARS-CoV-2-infected oral epithelial cells, both of which were found to transmit the virus. Collectively, these studies support an active role of the oral cavity in the spread and transmission of SARS-CoV-2 infection. In addition to maintaining the appropriate use of personal protective equipment and regimens to limit microbial spread via aerosol or droplet generation, the dental community will also be involved in co-managing COVID-19 'long haulers'-now termed Post-Acute COVID-19 Syndrome. Consequently, we propose that, as SARS-CoV-2 continues to spread and as new clinical challenges related to COVID-19 are documented, oral symptoms should be included in diagnostic and prognostic classifications as well as plans for multidisciplinary care. This article is protected by
Intravenous, Intratracheal, and Intranasal Inoculation of Swine with SARS-CoV-2
Buckley, A;Falkenberg, S;Martins, M;Laverack, M;Palmer, MV;Lager, K;Diel, DG;
PMID: 34452371 | DOI: 10.3390/v13081506
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the susceptibility of animals and their potential to act as reservoirs or intermediate hosts for the virus has been of significant interest. Pigs are susceptible to multiple coronaviruses and have been used as an animal model for other human infectious diseases. Research groups have experimentally challenged swine with human SARS-CoV-2 isolates with results suggesting limited to no viral replication. For this study, a SARS-CoV-2 isolate obtained from a tiger which is identical to human SARS-CoV-2 isolates detected in New York City and contains the D614G S mutation was utilized for inoculation. Pigs were challenged via intravenous, intratracheal, or intranasal routes of inoculation (n = 4/route). No pigs developed clinical signs, but at least one pig in each group had one or more PCR positive nasal/oral swabs or rectal swabs after inoculation. All pigs in the intravenous group developed a transient neutralizing antibody titer, but only three other challenged pigs developed titers greater than 1:8. No gross or histologic changes were observed in tissue samples collected at necropsy. In addition, no PCR positive samples were positive by virus isolation. Inoculated animals were unable to transmit virus to naïve contact animals. The data from this experiment as well as from other laboratories supports that swine are not likely to play a role in the epidemiology and spread of SARS-CoV-2.