Bräuninger, H;Stoffers, B;Fitzek, ADE;Meißner, K;Aleshcheva, G;Schweizer, M;Weimann, J;Rotter, B;Warnke, S;Edler, C;Braun, F;Roedl, K;Scherschel, K;Escher, F;Kluge, S;Huber, TB;Ondruschka, B;Schultheiss, HP;Kirchhof, P;Blankenberg, S;Püschel, K;Westermann, D;Lindner, D;
PMID: 34647998 | DOI: 10.1093/cvr/cvab322
Cardiac involvement in COVID-19 is associated with adverse outcome. However, it is unclear whether cell specific consequences are associated with cardiac SARS-CoV-2 infection. Therefore, we investigated heart tissue utilizing in situ hybridization, immunohistochemistry and RNA-sequencing in consecutive autopsy cases to quantify virus load and characterize cardiac involvement in COVID-19.In this study, 95 SARS-CoV-2-positive autopsy cases were included. A relevant SARS-CoV-2 virus load in the cardiac tissue was detected in 41/95 deceased (43%). MACE-RNA-sequencing was performed to identify molecular pathomechanisms caused by the infection of the heart. A signature matrix was generated based on the single-cell dataset "Heart Cell Atlas" and used for digital cytometry on the MACE-RNA-sequencing data. Thus, immune cell fractions were estimated and revealed no difference in immune cell numbers in cases with and without cardiac infection. This result was confirmed by quantitative immunohistological diagnosis.MACE-RNA-sequencing revealed 19 differentially expressed genes (DEGs) with a q-value <0.05 (e.g. up: IFI44L, IFT3, TRIM25; down: NPPB, MB, MYPN). The upregulated DEGs were linked to interferon pathways and originate predominantly from endothelial cells. In contrast, the downregulated DEGs originate predominately from cardiomyocytes. Immunofluorescent staining showed viral protein in cells positive for the endothelial marker ICAM1 but rarely in cardiomyocytes. The GO term analysis revealed that downregulated GO terms were linked to cardiomyocyte structure, whereas upregulated GO terms were linked to anti-virus immune response.This study reveals, that cardiac infection induced transcriptomic alterations mainly linked to immune response and destruction of cardiomyocytes. While endothelial cells are primarily targeted by the virus, we suggest cardiomyocyte-destruction by paracrine effects. Increased pro-inflammatory gene expression was detected in SARS-CoV-2-infected cardiac tissue but no increased SARS-CoV-2 associated immune cell infiltration was observed.Cardiac injury can be documented in COVID-19, regardless the direct cardiac virus infection and is known to be associated with outcome. However, the direct virus infection of the myocardium leads to transcriptomic alterations and might therefore additionally contribute to pathophysiological processes in COVID-19. Therefore, consequences of cardiac virus infection need to be investigated in future studies, since they might also contribute to long-term effects in case of survival.
Viral mapping in COVID-19 deceased in the Augsburg autopsy series of the first wave: A multiorgan and multimethodological approach
Hirschbühl, K;Dintner, S;Beer, M;Wylezich, C;Schlegel, J;Delbridge, C;Borcherding, L;Lippert, J;Schiele, S;Müller, G;Moiraki, D;Spring, O;Wittmann, M;Kling, E;Braun, G;Kröncke, T;Claus, R;Märkl, B;Schaller, T;
PMID: 34280238 | DOI: 10.1371/journal.pone.0254872
COVID-19 is only partly understood, and the level of evidence available in terms of pathophysiology, epidemiology, therapy, and long-term outcome remains limited. During the early phase of the pandemic, it was necessary to effectively investigate all aspects of this new disease. Autopsy can be a valuable procedure to investigate the internal organs with special techniques to obtain information on the disease, especially the distribution and type of organ involvement.During the first wave of COVID-19 in Germany, autopsies of 19 deceased patients were performed. Besides gross examination, the organs were analyzed with standard histology and polymerase-chain-reaction for SARS-CoV-2. Polymerase chain reaction positive localizations were further analyzed with immunohistochemistry and RNA-in situ hybridization for SARS-CoV-2.Eighteen of 19 patients were found to have died due to COVID-19. Clinically relevant histological changes were only observed in the lungs. Diffuse alveolar damage in considerably different degrees was noted in 18 cases. Other organs, including the central nervous system, did not show specific micromorphological alterations. In terms of SARS-CoV-2 detection, the focus remains on the upper airways and lungs. This is true for both the number of positive samples and the viral load. A highly significant inverse correlation between the stage of diffuse alveolar damage and viral load was found on a case and a sample basis. Mediastinal lymph nodes and fat were also affected by the virus at high frequencies. By contrast, other organs rarely exhibited a viral infection. Moderate to strong correlations between the methods for detecting SARS-CoV-2 were observed for the lungs and for other organs.The lung is the most affected organ in gross examination, histology and polymerase chain reaction. SARS-CoV-2 detection in other organs did not reveal relevant or specific histological changes. Moreover, we did not find CNS involvement.
Griffin, B;Warner, B;Chan, M;Valcourt, E;Tailor, N;Banadyga, L;Leung, A;He, S;Boese, A;Audet, J;Cao, W;Moffat, E;Garnett, L;Tierney, K;Tran, K;Albietz, A;Manguiat, K;Soule, G;Bello, A;Vendramelli, R;Lin, J;Deschambault, Y;Zhu, W;Wood, H;Mubareka, S;Safronetz, D;Strong, J;Embury-Hyatt, C;Kobasa, D;
| DOI: 10.1016/j.isci.2021.103530
The golden hamster model of SARS-CoV-2 infection recapitulates key characteristics of COVID-19. In this work we examined the influence of the route of exposure, sex, and age on SARS-CoV-2 pathogenesis in hamsters. We report that delivery of SARS-CoV-2 by a low versus high volume intranasal or intragastric route results in comparable viral titers in the lung and viral shedding. However, low-volume intranasal exposure results in milder weight loss while intragastric exposure leads to a diminished capacity to regain body weight. Male hamsters, and particularly older male hamsters, display an impaired capacity to recover from illness and delayed viral clearance. These factors were found to influence the nature of the host inflammatory cytokine response, but had a minimal effect on the quality and durability of the humoral immune response and susceptibility to re-infection. These data further elucidate key factors that impact pre-clinical challenge studies carried out in the hamster model of COVID-19.
SARS-CoV-2 infection and transmission in the North American deer mouse
Griffin, BD;Chan, M;Tailor, N;Mendoza, EJ;Leung, A;Warner, BM;Duggan, AT;Moffat, E;He, S;Garnett, L;Tran, KN;Banadyga, L;Albietz, A;Tierney, K;Audet, J;Bello, A;Vendramelli, R;Boese, AS;Fernando, L;Lindsay, LR;Jardine, CM;Wood, H;Poliquin, G;Strong, JE;Drebot, M;Safronetz, D;Embury-Hyatt, C;Kobasa, D;
PMID: 34127676 | DOI: 10.1038/s41467-021-23848-9
Widespread circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive nondomesticated animals. Here we report that North American deer mice (Peromyscus maniculatus) are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine. We further show that deer mice are capable of transmitting SARS-CoV-2 to naïve deer mice through direct contact. The extent to which these observations may translate to wild deer mouse populations remains unclear, and the risk of reverse zoonosis and/or the potential for the establishment of Peromyscus rodents as a North American reservoir for SARS-CoV-2 remains unknown.
Zazhytska, M;Kodra, A;Hoagland, DA;Frere, J;Fullard, JF;Shayya, H;McArthur, NG;Moeller, R;Uhl, S;Omer, AD;Gottesman, ME;Firestein, S;Gong, Q;Canoll, PD;Goldman, JE;Roussos, P;tenOever, BR;Jonathan B Overdevest, ;Lomvardas, S;
PMID: 35180380 | DOI: 10.1016/j.cell.2022.01.024
SARS-CoV-2 infects less than 1% of cells in the human body, yet it can cause severe damage in a variety of organs. Thus, deciphering the non-cell-autonomous effects of SARS-CoV-2 infection is imperative for understanding the cellular and molecular disruption it elicits. Neurological and cognitive defects are among the least understood symptoms of COVID-19 patients, with olfactory dysfunction being their most common sensory deficit. Here, we show that both in humans and hamsters, SARS-CoV-2 infection causes widespread downregulation of olfactory receptors (ORs) and of their signaling components. This non-cell-autonomous effect is preceded by a dramatic reorganization of the neuronal nuclear architecture, which results in dissipation of genomic compartments harboring OR genes. Our data provide a potential mechanism by which SARS-CoV-2 infection alters the cellular morphology and the transcriptome of cells it cannot infect, offering insight to its systemic effects in olfaction and beyond.
Broeckel, RM;Feldmann, F;McNally, KL;Chiramel, AI;Sturdevant, GL;Leung, JM;Hanley, PW;Lovaglio, J;Rosenke, R;Scott, DP;Saturday, G;Bouamr, F;Rasmussen, AL;Robertson, SJ;Best, SM;
PMID: 34855915 | DOI: 10.1371/journal.ppat.1009678
Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.
Jansen, J;Reimer, K;Nagai, J;Varghese, F;Overheul, G;de Beer, M;Roverts, R;Daviran, D;Fermin, L;Willemsen, B;Beukenboom, M;Djudjaj, S;von Stillfried, S;van Eijk, L;Mastik, M;Bulthuis, M;Dunnen, W;van Goor, H;Hillebrands, J;Triana, S;Alexandrov, T;Timm, M;Tideman van den Berge, B;van den Broek, M;Nlandu, Q;Heijnert, J;Bindels, E;Hoogenboezem, R;Mooren, F;Kuppe, C;Miesen, P;Grünberg, K;Ijzermans, T;Steenbergen, E;Czogalla, J;Schreuder, M;Sommerdijk, N;Akiva, A;Boor, P;Puelles, V;Floege, J;Huber, T;van Rij, R;Costa, I;Schneider, R;Smeets, B;Kramann, R;
| DOI: 10.1016/j.stem.2021.12.010
Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human induced pluripotent stem cell-derived kidney organoids with SARS-CoV-2. Single cell RNA-sequencing indicated injury and dedifferentiation of infected cells with activation of pro-fibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in Long-COVID.
Park, J;Foox, J;Hether, T;Danko, D;Warren, S;Kim, Y;Reeves, J;Butler, D;Mozsary, C;Rosiene, J;Shaiber, A;Afshin, E;MacKay, M;Rendeiro, A;Bram, Y;Chandar, V;Geiger, H;Craney, A;Velu, P;Melnick, A;Hajirasouliha, I;Beheshti, A;Taylor, D;Saravia-Butler, A;Singh, U;Wurtele, E;Schisler, J;Fennessey, S;Corvelo, A;Zody, M;Germer, S;Salvatore, S;Levy, S;Wu, S;Tatonetti, N;Shapira, S;Salvatore, M;Westblade, L;Cushing, M;Rennert, H;Kriegel, A;Elemento, O;Imielinski, M;Rice, C;Borczuk, A;Meydan, C;Schwartz, R;Mason, C;
| DOI: 10.1016/j.xcrm.2022.100522
The molecular mechanisms underlying the clinical manifestations of COVID-19 and what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome, remains poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match this data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue compartment-specific damage wrought by SARS-CoV-2 infection, evident as a function of varying viral loads during the clinical course of infection and tissue type specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.