Di Cicco E, Ferguson HW, Kaukinen KH, Schulze AD, Li S, Tabata A, Gunther OP, Mordecai G, Suttle CA, Miller KM.
PMID: - | DOI: 10.1139/facets-2018-0008
Piscine orthoreovirus Strain PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar). Given its high prevalence in net pen salmon, debate has arisen on whether PRV poses a risk to migratory salmon, especially in British Columbia (BC) where commercially important wild Pacific salmon are in decline. Various strains of PRV have been associated with diseases in Pacific salmon, including erythrocytic inclusion body syndrome (EIBS), HSMI-like disease, and jaundice/anemia in Japan, Norway, Chile and Canada. We examine the developmental pathway of HSMI and jaundice/anemia associated with PRV-1 in farmed Atlantic and Chinook (Oncorhynchus tshawytscha) salmon in BC, respectively. In situ hybridization localized PRV-1 within developing lesions in both diseases. The two diseases showed dissimilar pathological pathways, with inflammatory lesions in heart and skeletal muscle in Atlantic salmon, and degenerative-necrotic lesions in kidney and liver in Chinook salmon, plausibly explained by differences in PRV load tolerance in red blood cells. Viral genome sequencing revealed no consistent differences in PRV-1 variants intimately involved in the development of both diseases, suggesting that migratory Chinook salmon may be at more than a minimal risk of disease from exposure to the high levels of PRV occurring on salmon farms.
Yuehan Li, Xue Lu, Jiaxun Nie, Panpan Hu, Feifei Ge, Ti-Fei Yuan,and Xiaowei Guan
PMID: 32004865 | DOI: 10.1016/j.omtn.2019.12.030
We previously found that cocaine abuse could increase microRNA134 (miR134) levels in the hippocampus; yet the roles of miR134 in cocaine-related abnormal psychiatric outcomes remain unknown. In this study, using the cocaine-induced conditioned place preference (CPP) mice model, we found that mice exhibit enhanced anxiety-like and depression-like behaviors during the cocaine extinction (CE) period of CPP, accompanied by obviously increased miR134 levels and decreased levels of 19 genes that are associated with synaptic plasticity, glia activity, and neurochemical microenvironments, in the ventral hippocampus (vHP). Knockdown of miR134 in vHP in vivo reversed the changes in 15 of 19 potential gene targets of miR134 and rescued the abnormal anxiety-like and depression-like behavioral outcomes in CE mice. In parallel, knockdown of miR134 reversed CE-induced changes in dendritic spines and synaptic proteins and increased the field excitatory postsynaptic potential (fEPSP) of CA1 pyramidal neurons in the vHP of CE mice. In addition, knockdown of miR134 suppressed the CE-enhanced microglia activity, inflammatory, apoptotic, and oxidative stress statuses in the vHP. With the data taken together, miR134 may be involved in cocaine-associated psychiatric problems, potentially via regulating the expressions of its gene targets that are related to synaptic plasticity and neurochemical microenvironments
Biological significance of KRAS mutant allele expression in ovarian endometriosis
Yachida, N;Yoshihara, K;Suda, K;Nakaoka, H;Ueda, H;Sugino, K;Yamaguchi, M;Mori, Y;Yamawaki, K;Tamura, R;Ishiguro, T;Kase, H;Motoyama, T;Enomoto, T;
PMID: 33675098 | DOI: 10.1111/cas.14871
KRAS is the most frequently mutated in ovarian endometriosis. However, it is unclear whether the KRAS mutant allele's mRNA is expressed and plays a biological role in ovarian endometriosis. Here, we performed mutation-specific RNA in situ hybridization to evaluate mutant allele expression of KRAS p.G12V, the most frequently detected mutation in ovarian endometriosis in our previous study, in formalin-fixed paraffin-embedded tissue (FFPE) samples of ovarian endometriosis, cancer cell lines, and ovarian cancers. First, we verified that mutant or wild-type allele of KRAS were expressed in all 5 cancer cell lines and 9 ovarian cancer cases corresponding to the mutation status. Next, we applied this assay to 26 ovarian endometriosis cases, and observed mutant allele expression of KRAS p.G12V in 10 cases. Mutant or wild-type allele of KRAS were expressed in line with mutation status in 12 available endometriosis cases for which KRAS gene sequence was determined. Comparison of clinical features between ovarian endometriosis with KRAS p.G12V mutant allele expression and with KRAS wild-type showed that KRAS p.G12V mutant allele expression was significantly associated with inflammation in ovarian endometriosis. Finally, we assessed the spatial distribution of KRAS mutant allele expression in 5 endometriosis cases by performing multiregional sampling. Intratumor heterogeneity of KRAS mutant allele expression was observed in two endometriosis cases, whereas the spatial distribution of KRAS p.G12V mutation signals were diffuse and homogenous in ovarian cancer. In conclusion, evaluation of oncogene mutant expression will be useful for clarifying the biological significance of oncogene mutations in benign tumors.
Olesen, MA;Quintanilla, RA;
PMID: 37332018 | DOI: 10.1007/s12035-023-03434-4
Tau protein plays a pivotal role in the central nervous system (CNS), participating in microtubule stability, axonal transport, and synaptic communication. Research interest has focused on studying the role of post-translational tau modifications in mitochondrial failure, oxidative damage, and synaptic impairment in Alzheimer's disease (AD). Soluble tau forms produced by its pathological cleaved induced by caspases could lead to neuronal injury contributing to oxidative damage and cognitive decline in AD. For example, the presence of tau cleaved by caspase-3 has been suggested as a relevant factor in AD and is considered a previous event before neurofibrillary tangles (NFTs) formation.Interestingly, we and others have shown that caspase-cleaved tau in N- or C- terminal sites induce mitochondrial bioenergetics defects, axonal transport impairment, neuronal injury, and cognitive decline in neuronal cells and murine models. All these abnormalities are considered relevant in the early neurodegenerative manifestations such as memory and cognitive failure reported in AD. Therefore, in this review, we will discuss for the first time the importance of truncated tau by caspases activation in the pathogenesis of AD and how its negative actions could impact neuronal function.
Acta neuropathologica communications
Bauer, L;Rissmann, M;Benavides, FFW;Leijten, L;van Run, P;Begeman, L;Veldhuis Kroeze, EJB;Lendemeijer, B;Smeenk, H;de Vrij, FMS;Kushner, SA;Koopmans, MPG;Rockx, B;van Riel, D;
PMID: 36058935 | DOI: 10.1186/s40478-022-01426-4
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with various neurological complications. Although the mechanism is not fully understood, several studies have shown that neuroinflammation occurs in the acute and post-acute phase. As these studies have predominantly been performed with isolates from 2020, it is unknown if there are differences among SARS-CoV-2 variants in their ability to cause neuroinflammation. Here, we compared the neuroinvasiveness, neurotropism and neurovirulence of the SARS-CoV-2 ancestral strain D614G, the Delta (B.1.617.2) and Omicron BA.1 (B.1.1.529) variants using in vitro and in vivo models. The Omicron BA.1 variant showed reduced neurotropism and neurovirulence compared to Delta and D614G in human induced pluripotent stem cell (hiPSC)-derived cortical neurons co-cultured with astrocytes. Similar differences were obtained in Syrian hamsters inoculated with D614G, Delta and the Omicron BA.1 variant 5 days post infection. Replication in the olfactory mucosa was observed in all hamsters, but most prominently in D614G inoculated hamsters. Furthermore, neuroinvasion into the CNS via the olfactory nerve was observed in D614G, but not Delta or Omicron BA.1 inoculated hamsters. Furthermore, neuroinvasion was associated with neuroinflammation in the olfactory bulb of hamsters inoculated with D614G. Altogether, our findings suggest differences in the neuroinvasive, neurotropic and neurovirulent potential between SARS-CoV-2 variants using in vitro hiPSC-derived neural cultures and in vivo in hamsters during the acute phase of the infection.
Han TS, Voon DC, Oshima H, Nakayama M, Echizen K, Sakai E, Yong ZWE, Murakami K, Yu L, Minamoto T, Ock CY, Jenkins BJ, Kim SJ, Yang HK, Oshima M.
PMID: 30508510 | DOI: 10.1053/j.gastro.2018.11.059
Abstract
BACKGROUND & AIMS:
Gastritis is associated with development of stomach cancer, but little is known about changes in microRNA expression patterns during gastric inflammation. Specific changes in gene expression in epithelial cells are difficult to monitor because of the heterogeneity of the tissue. We investigated epithelial cell-specific changes in microRNA expression during gastric inflammation and gastritis-associated carcinogenesis in mice.
METHODS:
We used laser microdissection to enrich epithelial cells from K19-C2mE transgenic mice, which spontaneously develop gastritis-associated hyperplasia, and Gan mice, which express activated prostaglandin E2 and Wnt in the gastric mucosa and develop gastric tumors. We measured expression of epithelial cell-enriched microRNAs and used bioinformatics analyses to integrate data from different systems to identify inflammation-associated microRNAs. We validated our findings in gastric tissues from mice and evaluated protein functions in gastric cell lines (SNU-719, SNU-601, SNU-638, AGS, and GIF-14) and knockout mice. Organoids were cultured from gastric corpus tissues of wild-type and miR-135b-knockout C57BL/6 mice. We measured levels of microRNAs in pairs of gastric tumors and nontumor mucosa from 28 patients in Japan.
RESULTS:
We found microRNA 135b (miR-135B) to be the most overexpressed microRNA in gastric tissues from K19-C2mE and Gan mice: levels increased during the early stages of gastritis-associated carcinogenesis. Levels of miR-135B were also increased in gastric tumor tissues from gp130F/F mice and patients compared with nontumor tissues. In gastric organoids and immortalized cell lines, expression of miR-135B was induced by interleukin 1 signaling. K19-C2mE mice with disruption of Mir-135b developed hyperplastic lesions that were 50% smaller than mice without Mir-135b disruption and had significant reductions in cell proliferation. Expression of miR-135B in gastric cancer cell lines increased their colony formation, migration, and sphere formation. We identified FOXN3 and RECK messenger RNAs (mRNAs) as targets of miR-135B; their knockdown reduced migration of gastric cancer cell lines. Levels of FOXN3 and RECK mRNAs correlated inversely with levels of miR-135B in human gastric tumors and in inflamed mucosa from K19-C2mE mice.
CONCLUSIONS:
We found expression of miR-135B to be up-regulated by interleukin L1 signaling in gastric cancer cells and organoids. miR-135B promotes invasiveness and stem-cell features of gastric cancer cells in culture by reducing FOXN3 and RECK messenger RNAs. Levels of these messenger RNA targets, which encode tumor suppressor, are reduced in human gastric tumors.
Arpan R Mehta, Bhuvaneish T Selvaraj, Samantha K Barton, Karina McDade, Sharon Abrahams, Siddharthan Chandran, Colin Smith, Jenna M Gregory
The C9orf72 hexanucleotide repeat expansion is the commonest known genetic mutation in amyotrophic lateral sclerosis. A neuropathological hallmark is the intracellular accumulation of RNA foci. The role that RNA foci play in the pathogenesis of amyotrophic lateral sclerosis is widely debated. Historically, C9orf72 RNA foci have been identified using in situ hybridization. Here, we have implemented BaseScopeル, a high-resolution modified in situ hybridization technique. We demonstrate that previous studies have underestimated the abundance of RNA foci in neurons and glia. This improved detection allowed us to investigate the abundance, regional distribution and cell type specificity of antisense C9orf72 RNA foci in post-mortem brain and spinal cord tissue of six deeply clinically phenotyped C9orf72 patients and six age- and sex-matched controls. We find a correlation between RNA foci and the accumulation of transactive response DNA-binding protein of 43?kDa in spinal motor neurons (rs = 0.93; P?=?0.008), but not in glia or cortical motor neurons. We also demonstrate that there is no correlation between the presence of RNA foci and the accumulation of transactive response DNA binding protein of 43?kDa in extra-motor brain regions. Furthermore, there is no association between the presence of RNA foci and cognitive indices. These results highlight the utility of BaseScopeル in the clinicopathological assessment of the role of antisense RNA foci in C9orf72.
International journal of molecular sciences
Bielmeier, CB;Schmitt, SI;Kleefeldt, N;Boneva, SK;Schlecht, A;Vallon, M;Tamm, ER;Hillenkamp, J;Ergün, S;Neueder, A;Braunger, BM;
PMID: 35269767 | DOI: 10.3390/ijms23052626
Transforming growth factor β (TGFβ) signaling has manifold functions such as regulation of cell growth, differentiation, migration, and apoptosis. Moreover, there is increasing evidence that it also acts in a neuroprotective manner. We recently showed that TGFβ receptor type 2 (Tgfbr2) is upregulated in retinal neurons and Müller cells during retinal degeneration. In this study we investigated if this upregulation of TGFβ signaling would have functional consequences in protecting retinal neurons. To this end, we analyzed the impact of TGFβ signaling on photoreceptor viability using mice with cell type-specific deletion of Tgfbr2 in retinal neurons and Müller cells (Tgfbr2ΔOC) in combination with a genetic model of photoreceptor degeneration (VPP). We examined retinal morphology and the degree of photoreceptor degeneration, as well as alterations of the retinal transcriptome. In summary, retinal morphology was not altered due to TGFβ signaling deficiency. In contrast, VPP-induced photoreceptor degeneration was drastically exacerbated in double mutant mice (Tgfbr2ΔOC; VPP) by induction of pro-apoptotic genes and dysregulation of the MAP kinase pathway. Therefore, TGFβ signaling in retinal neurons and Müller cells exhibits a neuroprotective effect and might pose promising therapeutic options to attenuate photoreceptor degeneration in humans.
Brain pathology (Zurich, Switzerland)
Cooze, BJ;Dickerson, M;Loganathan, R;Watkins, LM;Grounds, E;Pearson, BR;Bevan, RJ;Morgan, BP;Magliozzi, R;Reynolds, R;Neal, JW;Howell, OW;
PMID: 35132719 | DOI: 10.1111/bpa.13054
The extent of grey matter demyelination and neurodegeneration in the progressive multiple sclerosis (PMS) brains at post-mortem associates with more severe disease. Regional tissue atrophy, especially affecting the cortical and deep grey matter, including the thalamus, is prognostic for poor outcomes. Microglial and complement activation are important in the pathogenesis and contribute to damaging processes that underlie tissue atrophy in PMS. We investigated the extent of pathology and innate immune activation in the thalamus in comparison to cortical grey and white matter in blocks from 21 cases of PMS and 10 matched controls. Using a digital pathology workflow, we show that the thalamus is invariably affected by demyelination and had a far higher proportion of active inflammatory lesions than forebrain cortical tissue blocks from the same cases. Lesions were larger and more frequent in the medial nuclei near the ventricular margin, whilst neuronal loss was greatest in the lateral thalamic nuclei. The extent of thalamic neuron loss was not associated with thalamic demyelination but correlated with the burden of white matter pathology in other forebrain areas (Spearman r = 0.79, p < 0.0001). Only thalamic neuronal loss, and not that seen in other forebrain cortical areas, correlated with disease duration (Spearman r = -0.58, p = 0.009) and age of death (Spearman r = -0.47, p = 0.045). Immunoreactivity for the complement pattern recognition molecule C1q, and products of complement activation (C4d, Bb and C3b) were elevated in thalamic lesions with an active inflammatory pathology. Complement regulatory protein, C1 inhibitor, was unchanged in expression. We conclude that active inflammatory demyelination, neuronal loss and local complement synthesis and activation in the thalamus, are important to the pathological and clinical disease outcomes of PMS.
Liko D, Mitchell L, Campbell KJ, Ridgway RA, Jones C, Dudek K, King A, Bryson S, Stevenson D, Blyth K, Strathdee D, Morton JP, Bird TG, Knight JRP, Willis AE and Sansom OJ
PMID: 30858608 | DOI: 10.1038/s41418-019-0316-7
RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.
D’Ambra, E;Santini, T;Vitiello, E;D’Uva, S;Silenzi, V;Morlando, M;Bozzoni, I;
| DOI: 10.1016/j.isci.2021.103504
CircRNAs belong to a family of RNA molecules which are conserved in evolution, have tissue-specific expression, and are abundant in neuronal cells. Here, we define several features of circ-Hdgfrp3 and describe interesting alterations occurring in motor neurons (MNs) carrying ALS-associated FUS mutations. Through a highly sensitive in situ approach we describe that circ-Hdgfrp3 traffics along neurites, while upon oxidative stress it is retained in the perinuclear region. While in wild-type stressed MNs, circ-Hdgfrp3 localizes in stress granules (SGs), in MNs carrying mutant FUS, a higher proportion of circ-Hdgfrp3 was trapped into cytoplasmic aggregates. Upon stress removal, circ-Hdgfrp3 was easily freed from SGs whereas it was less efficiently released from FUS-aggregates. We found that the human circ-Hdgfrp3 counterpart was also similarly associated to mutant FUS-aggregates in stressed neuronal cells. Overall, the alteration of circ-Hdgfrp3 trafficking adds a further layer of complexity to the role of FUS-aggregates in ALS disease.
Neuronal Nsun2 deficiency produces tRNA epitranscriptomic alterations and proteomic shifts impacting synaptic signaling and behavior
Blaze, J;Navickas, A;Phillips, HL;Heissel, S;Plaza-Jennings, A;Miglani, S;Asgharian, H;Foo, M;Katanski, CD;Watkins, CP;Pennington, ZT;Javidfar, B;Espeso-Gil, S;Rostandy, B;Alwaseem, H;Hahn, CG;Molina, H;Cai, DJ;Pan, T;Yao, WD;Goodarzi, H;Haghighi, F;Akbarian, S;
PMID: 34389722 | DOI: 10.1038/s41467-021-24969-x
Epitranscriptomic mechanisms linking tRNA function and the brain proteome to cognition and complex behaviors are not well described. Here, we report bi-directional changes in depression-related behaviors after genetic disruption of neuronal tRNA cytosine methylation, including conditional ablation and transgene-derived overexpression of Nsun2 in the mouse prefrontal cortex (PFC). Neuronal Nsun2-deficiency was associated with a decrease in tRNA m5C levels, resulting in deficits in expression of 70% of tRNAGly isodecoders. Altogether, 1488/5820 proteins changed upon neuronal Nsun2-deficiency, in conjunction with glycine codon-specific defects in translational efficiencies. Loss of Gly-rich proteins critical for glutamatergic neurotransmission was associated with impaired synaptic signaling at PFC pyramidal neurons and defective contextual fear memory. Changes in the neuronal translatome were also associated with a 146% increase in glycine biosynthesis. These findings highlight the methylation sensitivity of glycinergic tRNAs in the adult PFC. Furthermore, they link synaptic plasticity and complex behaviors to epitranscriptomic modifications of cognate tRNAs and the proteomic homeostasis associated with specific amino acids.