Dreyer JH, Hauck F, Oliveira-Silva M, Barros MH, Niedobitek G. (2013).
PMID: 23503925 | DOI: 10.1007/s00428-013-1393-5.
Detecting human papillomavirus (HPV) infection in head and neck squamous cell carcinoma (HNSCC) is clinically relevant, but there is no agreement about the most appropriate methodology. We have studied 64 oropharyngeal carcinomas using p16 immunohistochemistry, HPV DNA in situ hybridisation (ISH) and HPV DNA polymerase chain reaction (PCR) followed by pyrosequencing. We have also evaluated a new assay, RNAscope, designed to detect HPV E6/E7 RNA transcripts. Using a threshold of 70 % labelled tumour cells, 21 cases (32.8 %) were p16 positive. Of these, 19 cases scored positive with at least one HPV detection assay. Sixteen cases were positive by HPV DNA-ISH, and 18 cases were positive using the E6/E7 RNAscope assay. By PCR and pyrosequencing, HPV16 was detected in 15 cases, while one case each harboured HPV33, 35 and 56. All p16-negative cases were negative using these assays. We conclude that p16 expression is a useful surrogate marker for HPV infection in HNSCC with a high negative predictive value and that p16-positive cases should be further evaluated for HPV infection, preferably by PCR followed by type determination. Using RNase digestion experiments, we show that the RNAscope assay is not suitable for the reliable discrimination between E6/E7 RNA transcripts and viral DNA.
Lagarde-Lenon, MS;Aron, M;
PMID: 36894368 | DOI: 10.1016/j.humpath.2023.02.011
Primary female urethral carcinoma (PUC-F) accounts for less than 1% of all genitourinary malignancies and comprises a histologically diverse group of tumors that are usually associated with poor prognosis. The carcinomas documented at this site include adenocarcinoma (clear cell adenocarcinoma, columnar cell carcinoma, and Skene gland adenocarcinoma), urothelial carcinoma (UCa), and squamous cell carcinoma (SCC). Recent studies have shown adenocarcinomas to be the most common type of primary urethral carcinoma in females. As most of the urethral carcinomas morphologically resemble carcinomas arising from surrounding pelvic organs or metastases, these should be ruled out before making the diagnosis of PUC-F. These tumors are currently staged according to the 8th edition of the American Joint Committee on Cancer (AJCC) staging system. However, the AJCC system has limitations, including the staging of tumors involving the anterior wall of the urethra. Staging systems like the recently proposed histology-based female urethral carcinoma staging system (UCS) takes into account the unique histological landmarks of the female urethra to better stratify pT2 and pT3 tumors into prognostic groups, that correlate with clinical outcomes including recurrence rates, disease-specific survival and overall survival. Further larger multi-institutional cohorts are however required to validate the results of this staging system. There is very limited information regarding the molecular profiling of PUC-F. Thirty-one percent of clear cell adenocarcinomas have been reported to show PIK3CA alterations, whereas 15% of adenocarcinomas show PTEN mutations. Higher tumor mutational burden and PD-L1 staining have been reported in UCa and SCC. Although multimodality treatment is usually recommended in locally advanced and metastatic disease, the role of immunotherapy and targeted therapy is promising in select PUC-F cases.
Oral Oncology, 2014 - Elsevier
Westra WH
PMID: 24932529 | DOI: 10.1016/j.oraloncology.2014.05.004
Much recent attention has highlighted a subset of head and neck squamous cell carcinomas (HNSCCs) related to human papillomavirus (HPV) that has an epidemiologic, demographic, molecular and clinical profile which is distinct from non-HPV-related HNSCC. The clinical significance of detecting HPV in a HNSCC has resulted in a growing expectation for HPV testing of HNSCCs. Although the growing demand for routine testing is understandable and appropriate, it has impelled an undisciplined approach that has been largely unsystematic. The current state of the art has now arrived at a point where a better understanding of HPV-related tumorigenesis and a growing experience with HPV testing can now move wide scale, indiscriminant and non-standardized testing towards a more directed, clinically relevant and standardized approach. This review will address the current state of HPV detection; and will focus on why HPV testing is important, when HPV testing is appropriate, and how to test for the presence of HPV in various clinical samples. As no single test has been universally accepted as a best method, this review will consider the strengths and weaknesses of some of the more commonly used assays, and will emphasize some emerging techniques that may improve the efficiency of HPV testing of clinical samples including cytologic specimens.
Doorbar, J;
PMID: 37354969 | DOI: 10.1016/j.tvr.2023.200268
The incorporation of HPV DNA testing into cervical screening programs has shown that many HPV-positive women are cytologically normal, with HPV-positivity fluctuating throughout life. Such results suggest that papillomaviruses may persist in a latent state after disease clearance, with sporadic recurrence. It appears that virus latency represents a narrow slot in a wider spectrum of subclinical and possibly productive infections. Clinical studies, and animal model infection studies, suggested a key role for host immune surveillance in maintaining such asymptomatic infections, and although infections may also be cleared, most studies have used the term 'clearance' to describe a situation where the presence of HPV DNA falls below the clinical detection level. Given our knowledge of papillomavirus immune evasion strategies and the restricted pattern of viral gene expression required for 'basal cell' persistence, the term 'apparent clearance' and 'subclinical persistence' of infection may better summarise our understanding. Subclinical infection also encompasses the lag phase, which occurs between infection and lesion development. This is dependent on infection titre, with multifocal infections developing more rapidly to disease. These concepts can usefully influence patient management where HPV-positivity occurs sometime after the onset of sexual activity, and where vertical transmission is suspected despite a lag period.
Archives of pathology & laboratory medicine
Haqshenas, G;Molano, M;Phillips, S;Balgovind, P;Garland, SM;Hawkes, D;Brotherton, JM;Machalek, DA;Murray, G;
PMID: 37226838 | DOI: 10.5858/arpa.2022-0317-OA
Detection of human papillomavirus (HPV) in formalin-fixed, paraffin-embedded (FFPE) tissues may identify the cause of lesions and has value for the development of new diagnostic assays and epidemiologic studies. Seegene Anyplex II assays are widely used for HPV screening, but their performance using FFPE samples has not been fully explored.To validate Anyplex II HPV HR Detection (Anyplex II, Seegene) using FFPE samples.We used 248 stored DNA extracts from cervical cancer FFPE samples collected during 2005-2015 and that tested HPV positive using the RHA kit HPV SPF10-LiPA25, v1 (SPF10, Labo Biomedical Products) HPV genotyping assay, manufacturer-validated for FFPE samples.Of the selected 248 samples, 243 were used in our analysis. Consistent with SPF10 genotyping results, Anyplex II detected all 12 oncogenic types and had an overall HPV detection rate of 86.4% (210 of 243 samples). Anyplex II and SPF10 showed very high agreement for the detection of the 2 most important oncogenic genotypes: HPV 16 (219 of 226; 96.9%; 95% CI, 93.7-98.75) and HPV 18 (221 of 226; 97.8%; 95% CI, 94.9-99.3).Overall results showed that both platforms produced comparable HPV genotyping results, indicating the suitability of Anyplex II for FFPE samples. The Anyplex II assay has the added convenience of being an efficient, single-well semiquantitative polymerase chain reaction assay. Further optimization of Anyplex II may enhance its performance using FFPE samples by improving the detection limit.
Sathasivam HP, Santambrogio A, Andoniadou CL, Robinson M, Thavaraj S.
PMID: 30101315 | DOI: 10.1093/annonc/mdy313