Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (6)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (68) Apply HPV E6/E7 filter
  • HPV (18) Apply HPV filter
  • HPV-HR18 (14) Apply HPV-HR18 filter
  • TBD (12) Apply TBD filter
  • HPV18 (6) Apply HPV18 filter
  • 18 (5) Apply 18 filter
  • 31 (5) Apply 31 filter
  • HPV16 (4) Apply HPV16 filter
  • (-) Remove HPV16/18 filter HPV16/18 (4)
  • MmuPV1 (4) Apply MmuPV1 filter
  • HPV-HR16 (4) Apply HPV-HR16 filter
  • HPV HR18 (4) Apply HPV HR18 filter
  • HPV E6 / E7 (4) Apply HPV E6 / E7 filter
  • 33 (4) Apply 33 filter
  • 35 (4) Apply 35 filter
  • 39 (4) Apply 39 filter
  • 45 (4) Apply 45 filter
  • 51 (4) Apply 51 filter
  • 52 (4) Apply 52 filter
  • 56 (4) Apply 56 filter
  • 58 (4) Apply 58 filter
  • 59 (4) Apply 59 filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • E7 (3) Apply E7 filter
  • 26 (3) Apply 26 filter
  • E6/E7 (3) Apply E6/E7 filter
  • HPV 16 (3) Apply HPV 16 filter
  • 53 (3) Apply 53 filter
  • 66 (3) Apply 66 filter
  • 68 (3) Apply 68 filter
  • 73 (3) Apply 73 filter
  • 82 (3) Apply 82 filter
  • HPV16 E6/E7 (2) Apply HPV16 E6/E7 filter
  • HPV- E6 / E7 (2) Apply HPV- E6 / E7 filter
  • (-) Remove HR-HPV filter HR-HPV (2)
  • Wnt16 (1) Apply Wnt16 filter
  • Axin2 (1) Apply Axin2 filter
  • EBV (1) Apply EBV filter
  • HPV31 (1) Apply HPV31 filter
  • HPV33 (1) Apply HPV33 filter
  • HPV35 (1) Apply HPV35 filter
  • HPV52 (1) Apply HPV52 filter
  • HPV58 (1) Apply HPV58 filter
  • HPV-HR7 (1) Apply HPV-HR7 filter
  • CPV16-E6/E7 (1) Apply CPV16-E6/E7 filter
  • E6 (1) Apply E6 filter
  • HER2 (1) Apply HER2 filter
  • Cd207 (1) Apply Cd207 filter
  • Krt10 (1) Apply Krt10 filter
  • Fabp5 (1) Apply Fabp5 filter

Product

  • RNAscope (4) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • (-) Remove HPV filter HPV (6)
  • Cancer (5) Apply Cancer filter

Category

  • Publications (6) Apply Publications filter
Identification of high protein kinase CK2α in HPV(+) oropharyngeal squamous cell carcinoma and correlation with clinical outcomes

PeerJ

2021 Dec 13

Trembley, J;Li, B;Kren, B;Peltola, J;Manivel, J;Meyyappan, D;Gravely, A;Klein, M;Ahmed, K;Caicedo-Granados, E;
| DOI: 10.7717/peerj.12519

Background Oropharyngeal squamous cell carcinoma (OPSCC) incidence is rising worldwide, especially human papillomavirus (HPV)-associated disease. Historically, high levels of protein kinase CK2 were linked with poor outcomes in head and neck squamous cell carcinoma (HNSCC), without consideration of HPV status. This retrospective study examined tumor CK2α protein expression levels and related clinical outcomes in a cohort of Veteran OPSCC patient tumors which were determined to be predominantly HPV(+). Methods Patients at the Minneapolis VA Health Care System with newly diagnosed primary OPSCC from January 2005 to December 2015 were identified. A total of 119 OPSCC patient tumors were stained for CK2α, p16 and Ki-67 proteins and E6/E7 RNA. CK2α protein levels in tumors and correlations with HPV status and Ki-67 index were assessed. Overall survival (OS) analysis was performed stratified by CK2α protein score and separately by HPV status, followed by Cox regression controlling for smoking status. To strengthen the limited HPV(−) data, survival analysis for HPV(−) HNSCC patients in the publicly available The Cancer Genome Atlas (TCGA) PanCancer RNA-seq dataset was determined for CSNK2A1. Results The patients in the study population were all male and had a predominant history of tobacco and alcohol use. This cohort comprised 84 HPV(+) and 35 HPV(−) tumors. CK2α levels were higher in HPV(+) tumors compared to HPV(−) tumors. Higher CK2α scores positively correlated with higher Ki-67 index. OS improved with increasing CK2α score and separately OS was significantly better for those with HPV(+) as opposed to HPV(−) OPSCC. Both remained significant after controlling for smoking status. High CSNK2A1 mRNA levels from TCGA data associated with worse patient survival in HPV(−) HNSCC. Conclusions High CK2α protein levels are detected in HPV(+) OPSCC tumors and demonstrate an unexpected association with improved survival in a strongly HPV(+) OPSCC cohort. Worse survival outcomes for high CSNK2A1 mRNA levels in HPV(−) HNSCC are consistent with historical data. Given these surprising findings and the rising incidence of HPV(+) OPSCC, further study is needed to understand the biological roles of CK2 in HPV(+) and HPV(−) HNSCC and the potential utility for therapeutic targeting of CK2 in these two disease states.
Human Papillomavirus Genome Copy Number Is Maintained by S-Phase Amplification, Genome Loss to the Cytosol during Mitosis, and Degradation in G1 Phase

Journal of virology

2023 Feb 28

Bienkowska-Haba, M;Zwolinska, K;Keiffer, T;Scott, RS;Sapp, M;
PMID: 36749071 | DOI: 10.1128/jvi.01879-22

The current model of human papillomavirus (HPV) replication is comprised of three modes of replication. Following infectious delivery, the viral genome is amplified during the establishment phase to reach up to some hundred copies per cell. The HPV genome copy number remains constant during the maintenance stage. The differentiation of infected cells induces HPV genome amplification. Using highly sensitive in situ hybridization (DNAscope) and freshly HPV16-infected as well as established HPV16-positive cell lines, we observed that the viral genome is amplified in each S phase of undifferentiated keratinocytes cultured as monolayers. The nuclear viral genome copy number is reset to pre-S-phase levels during mitosis. The majority of the viral genome fails to tether to host chromosomes and is lost to the cytosol. Cytosolic viral genomes gradually decrease during cell cycle progression. The loss of cytosolic genomes is blocked in the presence of NH4Cl or other drugs that interfere with lysosomal acidification, suggesting the involvement of autophagy in viral genome degradation. These observations were also made with HPV31 cell lines obtained from patient samples. Cytosolic viral genomes were not detected in UMSCC47 cells carrying integrated HPV16 DNA. Analyses of organotypic raft cultures derived from keratinocytes harboring episomal HPV16 revealed the presence of cytosolic viral genomes as well. We conclude that HPV maintains viral genome copy numbers by balancing viral genome amplification during S phase with the loss of viral genomes to the cytosol during mitosis. It seems plausible that restrictions to viral genome tethering to mitotic chromosomes reset genome copy numbers in each cell cycle. IMPORTANCE HPV genome maintenance is currently thought to be achieved by regulating the expression and activity of the viral replication factors E1 and E2. In addition, the E8^E2 repressor has been shown to be important for restricting genome copy numbers by competing with E1 and E2 for binding to the viral origin of replication and by recruiting repressor complexes. Here, we demonstrate that the HPV genome is amplified in each S phase. The nuclear genome copy number is reset during mitosis by a failure of the majority of the genomes to tether to mitotic chromosomes. Rather, HPV genomes accumulate in the cytoplasm of freshly divided cells. Cytosolic viral DNA is degraded in G1 in a lysosome-dependent manner, contributing to the genome copy reset. Our data imply that the mode of replication during establishment and maintenance is the same and further suggest that restrictions to genome tethering significantly contribute to viral genome maintenance.
Impact of HPV status on immune responses in head and neck squamous cell carcinoma

Oral oncology

2022 Feb 24

Qureshi, HA;Zhu, X;Yang, GH;Steadele, M;Pierce, RH;Futran, ND;Lee, SM;Méndez, E;Houghton, AM;
PMID: 35219073 | DOI: 10.1016/j.oraloncology.2022.105774

The main objective of our study was to understand the impact of immune cell composition and the tumor-reactivity of tumor infiltrating lymphocytes (TIL) in HPV-positive (HPV+) and HPV-negative (HPV-) head and neck squamous cell carcinoma (HNSCC). TIL cultures were established from primary HNSCC tumors, the T cell subsets were phenotypically characterized using flow cytometry, and Interferon (IFN)-γ ELISA assay was used to determine TIL function. NanoString Immune Profiler was used to determine an immune signature by HPV-status, and multiplex immunohistochemistry (MIHC) was used to quantify immune cell distributions and their spatial relationships. Results showed that HPV+ and HPV- HNSCC had similar capacity to expand IFN-γ reactive TIL populations, and these TIL populations had similar characteristics. NanoString analysis revealed increased differential expression of genes related to B cell functions in HPV+ HNSCC, which were significant at a Benjamini-Yekutieli adjusted p-value of < 0.001. MIHC also displayed increased CD8+ T cell and CD19/CD20+ B cell densities in the tumor region of HPV+ HNSCC as opposed to HPV- HNSCC (p < 0.01). Increases in a combined metric of tumor B cell content and stromal plasma cell content was associated with increased progression-free survival in HPV- HNSCC patients treated with immune checkpoint inhibitor therapy (p = 0.03). In summary, TIL populations expanded from HPV+ and HPV- HNSCC displayed similar IFN-γ reactivity. However, we identified a strong B-cell signature present within HPV+ HNSCC, and higher B and plasma cell content associated with improved PFS in HPV- HNSCC patients treated with immune checkpoint inhibitors.
The Role of Integration and HPV Status in Malignant Transformation of Inverted Papillomas

J Neurol Surg B Skull Base

2022 Jan 01

Stepp, WH;Kimple, AJ;Ebert, CS;
| DOI: 10.1055/s-0042-1743610

Introduction: Inverted papillomas (IPs) are rare, benign, sinonasal tumors with the ability to undergo malignant transformation. While rare, they are the most common type of papilloma within the sinonasal cavity and represent up to 5% of primary nasal cavity tumors. There have been many studies attempting to define a causal link between HPV and malignant transformation of IPs with mixed results. Additionally, these tumors have a high recurrence rate, and their malignant transformation potential has spurred significant investigation into their etiology, disease course, and treatment. Prior meta-analyses of HPV-mediated transformation of IPs have suggested a nearly 50% prevalence of HPV in IPSCC and strong bias toward the high-risk virus types, HPV16 and HPV18, in IP malignant transformation. In this study, we have identified a large, retrospective cohort of benign IPs, IP-SCC, and control sinonasal polyp tissues that have been tested for high-risk HPV types to determine the prevalence in both benign and malignant IPs. Methods: A total of 94 IP tumors, 22 IP-SCC, and 13 sinonasal polyps were stained with HPV16/18 RNAscope and imaged with fluorescence to determine HPV status. Formalin-fixed slides were processed via standard antigen retrieval protocols and anti-HPV RNA staining was performed. Imaging was performed via confocal and bright-field microscopy. Results: We demonstrated significant HPV-positivity in IP-SCC versus benign IP tumors (p 
Utility of high-risk HPV RNA chromogenic in situ hybridization in cytology smears and liquid-based preparations from metastatic head and neck squamous cell carcinoma

Cancer cytopathology

2022 Nov 09

Velez Torres, JM;Alkathery, T;Tjendra, Y;Zuo, Y;Kerr, DA;Gomez-Fernandez, C;
PMID: 36350307 | DOI: 10.1002/cncy.22659

High-risk human papillomavirus (HR-HPV) status is critical for the diagnosis, prognosis, and treatment of patients with oropharyngeal squamous cell carcinoma (OPSCC). Patients often present with enlarged cervical nodes, and fine-needle aspiration cytology (FNAC) is frequently the initial diagnostic procedure. Although p16 is the most widely used surrogate marker, problems with interpretation can limit its utility in FNAC. HR-HPV RNA in situ hybridization (ISH) has emerged as a specific way to assess HPV status on cell block preparations of cervical nodes. The authors evaluated the utility of HR-HPV ISH in conventional smears and liquid-based cytology (LBC) preparations of metastatic head and neck squamous cell carcinoma (SCC).Thirty-one aspirates of proven, HPV-related SCC (confirmed by p16 and/or HR-HPV ISH in corresponding surgical specimens) were selected. Ten aspirates of HPV-negative SCC were also retrieved. HR-HPV ISH was performed on 27 smears and 14 LBC preparations. All results were scored as positive, equivocal, or negative.Eighty-four percent of metastatic, HPV-related SCCs were positive for HR-HPV RNA ISH, with high number of signals (n = 19) and low number of signals (n = 7), whereas five HPV-related SCCs were equivocal. All metastatic, HPV-negative SCCs were negative for HR-HPV ISH.HR-HPV ISH can be reliably performed on smears or LBC preparations, particularly when cell blocks are unavailable or paucicellular. Results were easy to interpret when high numbers of signals were present but were challenging in aspirates with low or rare number of signals. The current study suggests that HR-HPV ISH could be used as the initial testing modality for determining HPV status in FNAC specimens of metastatic SCC.
Stage IA1 HPV-associated cervical squamous cell carcinoma metastasizing to ovary by special pathway: a case report and literature review

Journal of ovarian research

2022 Feb 03

Zhang, Y;Zhang, X;Wang, H;Shen, D;
PMID: 35115032 | DOI: 10.1186/s13048-022-00949-7

As the leading cancer of the female reproductive tract, it is not uncommon for human papilloma virus (HPV)-associated cervical squamous cell carcinoma (HPV-CSCC) to metastasize to pelvic organs and lymph nodes in advanced stages. However, herein, we present a rare case in which superficial invasive HPV-CSCC metastasized to the unilateral ovary as a large mass by spreading directly through the endometrium and fallopian tubes and lymph-vascular space invasion. The case is so unexpected that the misdiagnosis most likely could be proceeded as a primary ovarian cancer.A 58-year-old postmenopausal woman presented vaginal bleeding for more than 4 months, never received hormonal treatment and had no family history of malignant diseases. Routine ultrasound revealed a 12 × 10 × 10 cm right ovarian mass. Intraoperative frozen section was diagnosed as a borderline Brenner tumour with local highly suspected invasive carcinoma. Accordingly, omentectomy surgery then occurred. Unbelievably, by observation under a microscope, immunohistochemistrial staining, and HPV RNA scope, we found that the carcinoma originated from the uterine cervix. In the uterine cervix, stage IA1 superficial invasive squamous carcinoma was found, and the carcinoma directly spread to the endometrium and bilateral fallopian tube, was planted into the right ovary and eventually grew as a large mass. Moreover, lymph-vascular space invasion (LVSI) was also discovered. To date, the patient has been given 6 cycles of chemotherapy and has experienced no recurrence.The diagnosis of superficial invasive cervical squamous cell carcinoma metastasizing to the ovary is very challenging for pathological doctors, especially in intraoperative consultations.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?