Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (129)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • INS (192) Apply INS filter
  • dazl (178) Apply dazl filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • DISC1 (109) Apply DISC1 filter
  • Dmbt1 (109) Apply Dmbt1 filter
  • Hic1 (108) Apply Hic1 filter
  • NFKBIZ (91) Apply NFKBIZ filter
  • Gad1 (90) Apply Gad1 filter
  • Nfkb1 (80) Apply Nfkb1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • Ikbke (74) Apply Ikbke filter
  • FOS (73) Apply FOS filter
  • GREB1 (73) Apply GREB1 filter
  • NFKB2 (73) Apply NFKB2 filter
  • PRAME (72) Apply PRAME filter
  • PACSIN2 (72) Apply PACSIN2 filter
  • ALPP (71) Apply ALPP filter
  • Powassan (71) Apply Powassan filter
  • Langat (70) Apply Langat filter
  • 16SrRNA (69) Apply 16SrRNA filter
  • MACC1 (67) Apply MACC1 filter
  • Aim2 (66) Apply Aim2 filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • GEM (63) Apply GEM filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • (-) Remove GLI1 filter GLI1 (51)
  • PACSIN3 (48) Apply PACSIN3 filter
  • RER1 (48) Apply RER1 filter
  • SPIDR (48) Apply SPIDR filter
  • SPRING1 (48) Apply SPRING1 filter
  • PVALB (47) Apply PVALB filter
  • BFSP1 (47) Apply BFSP1 filter
  • egfp (46) Apply egfp filter
  • DCC (46) Apply DCC filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • DLC1 (41) Apply DLC1 filter
  • Greb1l (40) Apply Greb1l filter
  • GFAP (39) Apply GFAP filter

Product

  • RNAscope 2.0 Assay (32) Apply RNAscope 2.0 Assay filter
  • RNAscope Multiplex Fluorescent Assay (11) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Red assay (9) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (8) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (5) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (4) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (3) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit (1) Apply RNAscope 2.5 HD Reagent Kit filter
  • RNAscope 2.5 LS Assay - RED (1) Apply RNAscope 2.5 LS Assay - RED filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (90) Apply Cancer filter
  • HPV (68) Apply HPV filter
  • Infectious Disease (61) Apply Infectious Disease filter
  • Neuroscience (10) Apply Neuroscience filter
  • Development (9) Apply Development filter
  • Developmental (7) Apply Developmental filter
  • Stem Cells (7) Apply Stem Cells filter
  • Other (5) Apply Other filter
  • Bone (3) Apply Bone filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Other: Osteoarthritis (2) Apply Other: Osteoarthritis filter
  • Regeneration (2) Apply Regeneration filter
  • Circadian Rhythms (1) Apply Circadian Rhythms filter
  • Devlopment (1) Apply Devlopment filter
  • Endrocrinology (1) Apply Endrocrinology filter
  • human health (1) Apply human health filter
  • Inflammation (1) Apply Inflammation filter
  • Injury (1) Apply Injury filter
  • Liver (1) Apply Liver filter
  • Other: Methods (1) Apply Other: Methods filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Protocols (1) Apply Protocols filter
  • Stem cell (1) Apply Stem cell filter

Category

  • Publications (129) Apply Publications filter
Hedgehog Signaling Modulates Interleukin‐33‐Dependent Extrahepatic Bile Duct Cell Proliferation in Mice.

Hepatol Commun. (2018)

2018 Dec 11

Razumilava N, Shiota J, Mohamad Zaki NH, Ocadiz-Ruiz R, Cieslak CM, Zakharia K, Allen BL, Gores GJ, Samuelson LC, Merchant JL.
| DOI: 10.1002/hep4.1295

Hedgehog (HH) signaling participates in hepatobiliary repair after injury and is activated in patients with cholangiopathies. Cholangiopathies are associated with bile duct (BD) hyperplasia, including expansion of peribiliary glands, the niche for biliary progenitor cells. The inflammation‐associated cytokine interleukin (IL)‐33 is also up‐regulated in cholangiopathies, including cholangiocarcinoma. We hypothesized that HH signaling synergizes with IL‐33 in acute inflammation‐induced BD hyperplasia. We measured extrahepatic BD (EHBD) thickness and cell proliferation with and without an IL‐33 challenge in wild‐type mice, mice overexpressing Sonic HH (pCMV‐Shh), and mice with loss of the HH pathway effector glioma‐associated oncogene 1 (Gli1lacZ/lacZ). LacZ reporter mice were used to map the expression of HH effector genes in mouse EHBDs. An EHBD organoid (BDO) system was developed to study biliary progenitor cells in vitro. EHBDs from the HH overexpressing pCMV‐Shh mice showed increased epithelial cell proliferation and hyperplasia when challenged with IL‐33. In Gli1lacZ/lacZ mice, we observed a decreased proliferative response to IL‐33 and decreased expression of Il6. The HH ligands Shh and Indian HH (Ihh) were expressed in epithelial cells, whereas the transcriptional effectors Gli1, Gli2, and Gli3 and the HH receptor Patched1 (Ptch1) were expressed in stromal cells, as assessed by in situ hybridization and lacZ reporter mice. Although BDO cells lacked canonical HH signaling, they expressed the IL‐33 receptor suppression of tumorigenicity 2. Accordingly, IL‐33 treatment directly induced BDO cell proliferation in a nuclear factor κB‐dependent manner. Conclusion: HH ligand overexpression enhances EHBD epithelial cell proliferation induced by IL‐33. This proproliferative synergism of HH and IL‐33 involves crosstalk between HH ligand‐producing epithelial cells and HH‐responding stromal cells.
GLI1 activates pro-fibrotic pathways in myelofibrosis fibrocytes

Cell death & disease

2022 May 20

Manshouri, T;Veletic, I;Li, P;Yin, CC;Post, SM;Verstovsek, S;Estrov, Z;
PMID: 35595725 | DOI: 10.1038/s41419-022-04932-4

Bone marrow (BM) fibrosis was thought to be induced exclusively by mesenchymal stromal cells (MSCs). However, we and others found that neoplastic fibrocytes induce BM fibrosis in myelofibrosis (MF). Because glioma-associated oncogene-1 (GLI1), an effector of the Hedgehog pathway, plays a role in the induction of BM fibrosis, we wondered whether GLI1 affects fibrocyte-induced BM fibrosis in MF. Multiplexed fluorescence immunohistochemistry analysis of MF patients' BM detected high levels of GLI1 in MF fibrocytes compared to MSCs or normal fibrocytes. Immunostaining, RNA in situ hybridization, gene expression analysis, and western immunoblotting detected high levels of GLI1 and GLI1-induced matrix metalloproteases (MMP) 2 and 9 in MF patients BM-derived cultured fibrocytes. Similarly, MF patients' BM-derived GLI1+ fibrocytes were found in BMs and spleens of MF xenograft mice. GLI1 silencing reduced the levels of MMP2/9, phosphorylated SMAD2/3, and procollagen-I, and knockdown or inhibition of GLI1 decreased fibrocyte formation and induced apoptosis of both fibrocytes and fibrocyte progenitors. Because Janus kinase (JAK)2-induced STAT3 is constitutively activated in MF and because STAT3 induces GLI1 expression, we sought to determine whether STAT3 activates GLI1 in MF fibrocytes. Imaging analysis detected phosphotyrosine STAT3 in MF patients' BM fibrocytes, and transfection of fibrocytes with STAT3-siRNA or treatment with a JAK1/2 inhibitor ruxolitinib reduced GLI1 and MMP2/9 levels. Chromatin immunoprecipitation and a luciferase assay revealed that STAT3 induced the expression of the GLI1 gene in both MF BM fibrocytes and fibrocyte progenitors. Together, our data suggest that STAT3-activated GLI1 contributes to the induction of BM fibrosis in MF.
Sonic Hedgehog Agonist Protects Against Complex Neonatal Cerebellar Injury

Cerebellum.

2017 Nov 13

Nguyen V, Sabeur K, Maltepe E, Ameri K, Bayraktar O, Rowitch DH.
PMID: 29134361 | DOI: 10.1007/s12311-017-0895-0

The cerebellum undergoes rapid growth during the third trimester and is vulnerable to injury and deficient growth in infants born prematurely. Factors associated with preterm cerebellar hypoplasia include chronic lung disease and postnatal glucocorticoid administration. We modeled chronic hypoxemia and glucocorticoid administration in neonatal mice to study whole cerebellar and cell type-specific effects of dual exposure. Chronic neonatal hypoxia resulted in permanent cerebellar hypoplasia. This was compounded by administration of prednisolone as shown by greater volume loss and Purkinje cell death. In the setting of hypoxia and prednisolone, administration of a small molecule Smoothened-Hedgehog agonist (SAG) preserved cerebellar volume and protected against Purkinje cell death. Such protective effects were observed even when SAG was given as a one-time dose after dual insult. To model complex injury and determine cell type-specific roles for the hypoxia inducible factor (HIF) pathway, we performed conditional knockout of von Hippel Lindau (VHL) to hyperactivate HIF1α in cerebellar granule neuron precursors (CGNP) or Purkinje cells. Surprisingly, HIF activation in either cell type resulted in no cerebellar deficit. However, in mice administered prednisolone, HIF overactivation in CGNPs resulted in significant cerebellar hypoplasia, whereas HIF overactivation in Purkinje cells caused cell death. Together, these findings indicate that HIF primes both cell types for injury via glucocorticoids, and that hypoxia/HIF + postnatal glucocorticoid administration act on distinct cellular pathways to cause cerebellar injury. They further suggest that SAG is neuroprotective in the setting of complex neonatal cerebellar injury.

Developmental and sexual dimorphic atlas of the prenatal mouse external genitalia at the single-cell level

Proceedings of the National Academy of Sciences of the United States of America

2021 Jun 22

Amato, CM;Yao, HH;
PMID: 34155146 | DOI: 10.1073/pnas.2103856118

Birth defects of the external genitalia are among the most common in the world. Proper formation of the external genitalia requires a highly orchestrated process that involves special cell populations and sexually dimorphic hormone signaling. It is clear what the end result of the sexually dimorphic development is (a penis in the male versus clitoris in the female); however, the cell populations involved in the process remain poorly defined. Here, we used single-cell messenger RNA sequencing in mouse embryos to uncover the dynamic changes in cell populations in the external genitalia during the critical morphogenetic window. We found that overall, male and female external genitalia are largely composed of the same core cellular components. At the bipotential stage of development (embryonic day or E14.5), few differences in cell populational composition exist between male and female. Although similar in cell population composition, genetic differences in key sexual differentiation developmental pathways arise between males and females by the early (E16.5) and late (E18.5) differentiation stages. These differences include discrete cell populations with distinct responsiveness to androgen and estrogen. By late sexual differentiation (E18.5), unique cell populations in both male and female genitalia become apparent and are enriched with androgen- and estrogen-responsive genes, respectively. These data provide insights into the morphogenesis of the external genitalia that could be used to understand diseases associated with defects in the external genitalia.
SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts

Nature communications

2021 Jul 29

Sun, J;Shin, DY;Eiseman, M;Yallowitz, AR;Li, N;Lalani, S;Li, Z;Cung, M;Bok, S;Debnath, S;Marquez, SJ;White, TE;Khan, AG;Lorenz, IC;Shim, JH;Lee, FS;Xu, R;Greenblatt, MB;
PMID: 34326333 | DOI: 10.1038/s41467-021-24819-w

Hedgehog signaling is essential for bone formation, including functioning as a means for the growth plate to drive skeletal mineralization. However, the mechanisms regulating hedgehog signaling specifically in bone-forming osteoblasts are largely unknown. Here, we identified SLIT and NTRK-like protein-5(Slitrk5), a transmembrane protein with few identified functions, as a negative regulator of hedgehog signaling in osteoblasts. Slitrk5 is selectively expressed in osteoblasts and loss of Slitrk5 enhanced osteoblast differentiation in vitro and in vivo. Loss of SLITRK5 in vitro leads to increased hedgehog signaling and overexpression of SLITRK5 in osteoblasts inhibits the induction of targets downstream of hedgehog signaling. Mechanistically, SLITRK5 binds to hedgehog ligands via its extracellular domain and interacts with PTCH1 via its intracellular domain. SLITRK5 is present in the primary cilium, and loss of SLITRK5 enhances SMO ciliary enrichment upon SHH stimulation. Thus, SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts that may be attractive as a therapeutic target to enhance bone formation.
Transcriptional Activity of HPV in Inverted Papilloma Demonstrated by In Situ Hybridization for E6/E7 mRNA.

Otolaryngol Head Neck Surg. 2015 Feb 27.

Stoddard DG Jr, Keeney MG, Gao G, Smith DI, García JJ, O'Brien EK.
PMID: 25724573 | DOI: 0194599815571285.

OBJECTIVE: Assess human papilloma virus (HPV) transcriptional activity in inverted Schneiderian papillomas (IPs). STUDY DESIGN: Case series with chart review. SETTING: Academic tertiary care center. SUBJECTS AND METHODS: Retrospective clinicopathologic review of 19 cases of IP in patients undergoing surgical excision from 1995 to 2013 at Mayo Clinic in Rochester, Minnesota. Surgical pathology archival material was histopathologically reviewed using hematoxylin and eosin-stained slides. Formalin-fixed, paraffin-embedded material from each case was evaluated for p16 expression using immunohistochemistry as well as HPV DNA and E6/E7 messenger RNA (mRNA) transcription using polymerase chain reaction (PCR) and in situ hybridization (via RNAscope technology), respectively. RESULTS: Eight patients were female (42%), with an average age of 53 years (range, 23-82 years). Three demonstrated malignancy, and 5 subsequently recurred. Average follow-up was 49 months (range, 0-200 months), and 1 patient died from squamous cell carcinoma arising from the IP. RNAscope detected HPV mRNA transcripts exclusively within IP in 100% of cases; however, in 11 patients (58%), less than 1% of cells exhibited transcriptional activity. Only 2 of 19 cases (11%) demonstrated mRNA activity in 50% or more cells. HPV DNA was detected in only 2 specimens by PCR. CONCLUSIONS: This study reveals wide prevalence but limited transcriptional activity of HPV in IP. No correlation between HPV transcriptional activity and progression, recurrence, or malignant transformation was identified. These data suggest that transcription of HPV may contribute to the pathogenesis of IP, but prospective data are needed to definitively demonstrate this connection. These results also suggest that RNAscope may be more sensitive than PCR in detecting HPV activity in IP.
Presence of high risk HPV DNA but indolent transcription of E6/E7 oncogenes in invasive ductal carcinoma of breast

Pathology - Research and Practice

2016 Sep 22

Wanga D, Fu L, Shah W, Zhang J, Yan Y, Ge X, He J, Wang Y, Xu Li.
PMID: - | DOI: dx.doi.org/10.1016/j.prp.2016.09.009

Background and aims

The causative role of high risk human papillomavirus (HR-HPV) in breast cancer development is controversial, though a number of reports have identified HR-HPV DNA in breast cancer specimens. Nevertheless, most studies to date have focused primarily on viral DNA rather than the viral transcription. The aim of this study was to investigate the presence of HR-HPV in breast cancer tissues at HPV DNA level and HPV oncogenes mRNA level by in situ hybridization (ISH).

Methods

One hundred and forty six (146) cases of breast invasive ductal carcinoma(IDC) and 83 cases of benign breast lesions were included in the study. Type specific oligonucleotide probes were used for the DNA detection of HPV 16,18 and 58 by ISH. HR-HPV oncogenes mRNA was assayed by novel RNAscope HR-HPV HR7 assay ISH. p16 protein expression was evaluated by immunohistochemistry (IHC).

Results

HR-HPV 16,18 and 58 DNA were detected in 52 out of 146 (35.6%) IDC and in 3 out of 83 (3.6%) benign breast lesions by ISH. The HR-HPV mRNAs was detected only in a few specimens with strong HPV DNA positivity(4/25) in a few scattered cancer cells with very weak punctate nuclear and/or cytoplasmic staining. p16 over-expression did not correlate with the HPV DNA positive breast cancer samples(17/52 HPVDNA+ vs 28/94 HPV DNA-, p = 0.731).

Conclusions

HR-HPVs certainly exist in breast cancer tissue with less active transcription, which implies that the causal role of HPV in breast cancer development need further study.

Squamous and Neuroendocrine Specific Immunohistochemical Markers in Head and Neck Squamous Cell Carcinoma: A Tissue Microarray Study.

Head Neck Pathol.

2017 May 20

Lewis JS Jr, Chernock RD, Bishop JA.
PMID: 28528398 | DOI: 10.1007/s12105-017-0825-y

The performance characteristics of neuroendocrine-specific and squamous-specific immunohistochemical markers in head and neck squamous cell carcinomas (SCC), in particular in oropharyngeal tumors in this era of human papillomavirus (HPV)-induced cases, are not well-established. The differential diagnosis for poorly differentiated SCCs, for nonkeratinizing oropharyngeal SCCs, and for other specific SCC variants such as basaloid SCC and undifferentiated (or lymphoepithelial-like) carcinomas includes neuroendocrine carcinomas. Given that neuroendocrine carcinomas of the head and neck are aggressive regardless of HPV status, separating them from SCC is critically important. In this study, we examined the neuroendocrine markers CD56, synaptophysin, and chromogranin-A along with the squamous markers p40 and cytokeratin 5/6 in a large tissue microarray cohort of oral, oropharyngeal, laryngeal, and hypopharyngeal SCCs with known HPV results by RNA in situ hybridization for the oropharyngeal tumors. Results were stratified by site and specific SCC variant. The neuroendocrine stains were rarely expressed in SCC (<1% overall) with CD56 the least, and chromogranin-A the most, specific markers. Further, p40 and cytokeratin 5/6 were very consistently expressed in all head and neck SCC (>98% overall), including very strong, consistent staining in oropharyngeal HPV-related nonkeratinizing SCC. Undifferentiated (or lymphoepithelial-like) carcinomas of the oropharynx are more frequently p40 or cytokeratin 5/6 negative or show only weak or focal expression. In summary, markers of neuroendocrine and squamous differentiation show very high specificity and sensitivity, respectively, across the different types of head and neck SCC.

Regulation and Role of GLI1 in Cutaneous Squamous Cell Carcinoma Pathogenesis.

Front Genet

2019 Dec 04

Pyczek J, Khizanishvili N, Kuzyakova M, Zabel S, Bauer J, Nitzki F, Emmert S, Sch�n MP, Boukamp P, Schildhaus HU, Uhmann A, Hahn H
PMID: 31867038 | DOI: 10.3389/fgene.2019.01185

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin tumor in humans. Although current therapies are sufficient to clear the tumor in many cases, the overall risk of cSCC metastasis is still 5%. Alternative treatment options could help to overcome this situation. Here we focused on the role of the Hedgehog (HH) signaling pathway and its interplay with epidermal growth factor receptor (EGFR) signaling in cSCC. The analyses revealed that, despite lack of Sonic HH (SHH) expression, a subset of human cSCC can express GLI1, a marker for active HH signaling, within distinct tumor areas. In contrast, all tumors strongly express EGFR and the hair follicle stem cell marker SOX9 at the highly proliferative tumor-stroma interface, whereas central tumor regions with a more differentiated stratum spinosum cell type lack both EGFR and SOX9 expression. In vitro experiments indicate that activation of EGFR signaling in the human cSCC cell lines SCL-1, MET-1, and MET-4 leads to GLI1 inhibition via the MEK/ERK axis without affecting cellular proliferation. Of note, EGFR activation also inhibits cellular migration of SCL-1 and MET-4 cells. Because proliferation and migration of the cells is also not altered by a GLI1 knockdown, GLI1 is apparently not involved in processes of aggressiveness in established cSCC tumors. In contrast, our data rather suggest a negative correlation between Gli1 expression level and cSCC formation because skin of Ptch +/- mice with slightly elevated Gli1 expression levels is significantly less susceptible to chemically-induced cSCC formation compared to murine wildtype skin. Although not yet formally validated, these data open the possibility that GLI1 (and thus HH signaling) may antagonize cSCC initiation and is not involved in cSCC aggressiveness, at least in a subset of cSCC.
Human papillomavirus (HPV) status of non-tobacco related squamous cell carcinomas of the lateral tongue.

Oral Oncol. Apr; 50(4):306–310.

Poling JS, Ma XJ, Bui S, Luo Y, Li R, Koch WM, Westra WH (2014).
PMID: 24485566 | DOI: 10.1016/j.oraloncology.2014.01.006.

OBJECTIVES: The human papillomavirus (HPV) is an important cause of some head and neck squamous cell carcinomas (HNSCCs), but its role in cancer of the lateral tongue is debatable. Suspicion of HPV causation is heightened when these lateral tongue carcinomas arise in patients that are young and/or have never smoked. The purpose of this study was to determine the incidence of transcriptionally active high risk HPV in these tumors, with a particular emphasis on non-smoking patients who are often presumed to have HPV-positive tumors. METHODS: We evaluated 78 HNSCCs of the lateral tongue for the presence of HPV using p16 immunohistochemistry and an RNA in situ hybridization assay targeting HPV E6/E7 mRNA. The study population was enriched for patients without traditional risk factors such as smoking and drinking. RESULTS: P16 overexpression was detected in 9 (11.5%) of 78 cases, but HPV E6/E7 mRNA transcripts were detected in only 1 (1.3%) case (positive predictive value of p16 staining for the presence of transcriptionally active HPV=0.12). HPV mRNA transcripts were not detected in any patient under 40 (n=11), or in patients who had never smoked (n=44), had quit smoking (n=15), and/or were only light consumers of alcohol (n=57). CONCLUSIONS: HPV is not detected in the vast majority of lateral tongue carcinomas. In light of the observation that HPV plays little if any role in the development of these cancers, routine HPV testing is unwarranted , even for patients without traditional risk factors. P16 staining is not a reliable marker for the presence of transcriptionally active HPV at this particular anatomic site.
Correlation of Circulating CD64+/CD163+ Monocyte Ratio and stroma/peri-tumoral CD163+ Monocyte Density with Human Papillomavirus Infected Cervical Lesion Severity

Cancer Microenviron.

2017 Oct 24

Swangphon P, Pientong C, Sunthamala N, Bumrungthai S, Azuma M, Kleebkaow P, Tangsiriwatthana T, Sangkomkamhang U, Kongyingyoes B, Ekalaksananan T.
PMID: 29064053 | DOI: 10.1007/s12307-017-0200-2

HPV infected cervical cells secrete mediators that are gradually changed and have influence on infiltrating M2 phenotypic monocytes in cervical lesions. However, profiles of circulating immune cells in women with cervical lesions and M2 phenotypic monocyte activity in HPV infected cervical lesions are limited. This study aimed to investigate circulating monocyte populations correlated with M2 phenotype density and its activity in HPV infected cervical lesions. HPV DNA was investigated in cervical tissues using PCR. High risk HPV E6/E7 mRNA was detected using in situ hybridization. CD163 immunohistochemical staining was performed for M2 macrophage. CD163 and Arg1 mRNA expression were detected using real-time PCR. Circulating monocyte subpopulations were analyzed using flow cytometry. CD163 and Arg1 mRNA expression were increased according to cervical lesion severity and corresponding with density of M2 macrophage in HSIL and SCC in stroma and peri-tumoral areas. Additionally, the relationship between M2 macrophage infiltration and high risk HPV E6/E7 mRNA expression was found and corresponded with cervical lesion severity. Circulating CD14+CD16+ and CD14+CD163+ monocytes were elevated in No-SIL and cervical lesions. Interestingly, CD14+CD64+ monocyte was greatly elevated in HSIL and SCC, whereas intracellular IL-10+monocytes were not significantly different between cervical lesions. The correlation between increasing ratio of circulating CD64+/CD163+monocyte and density of infiltrating CD163+ monocytes was associated with severity of HPV infected cervical lesions. The elevated circulating CD64+/CD163+ monocyte ratio correlates to severity of HPV infected cervical lesions and might be a prognostic marker in cervical cancer progression.

Response of Gli1+ Suture Stem cells to Mechanical Force upon Suture Expansion

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research

2022 Apr 20

Jing, D;Chen, Z;Men, Y;Yi, Y;Wang, Y;Wang, J;Yi, J;Wan, L;Shen, B;Feng, JQ;Zhao, Z;Zhao, H;Li, C;
PMID: 35443291 | DOI: 10.1002/jbmr.4561

02 May 2022: This Accepted Article published in error. The article is under embargo and will publish in Early View in July 2022.This article is protected by

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?