ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Diabetes Obes Metab.
2018 Apr 29
Hebsgaard JB, Pyke C, Yildirim E, Knudsen LB, Heegaard S, Kvist PH.
PMID: 29707863 | DOI: 10.1111/dom.13339
Semaglutide is a human glucagon-like peptide-1 (GLP-1) analogue that is in development for the treatment of type 2 diabetes. In the pre-approval cardiovascular outcomes trial SUSTAIN 6, semaglutide was associated with a significant increase in the risk of diabetic retinopathy (DR) complications vs placebo. GLP-1 receptor (GLP-1R) expression has previously been demonstrated in the retina in animals and humans; however, antibodies used to detect expression have been documented to be non-specific and fail to detect the GLP-1R using immunohistochemistry (IHC), a problem common for many G-protein coupled receptors. Using a validated GLP-1R antibody for IHC and in situ hybridization for GLP-1R mRNA in normal human eyes, GLP-1Rs were detected in a small fraction of neurons in the ganglion cell layer. In advanced stages of DR, GLP-1R expression was not detected at the protein or mRNA level. Specifically, no GLP-1R expression was found in the eyes of people with long-standing proliferative DR (PDR). In conclusion, GLP-1R expression is low in normal human eyes and was not detected in eyes exhibiting advanced stages of PDR.
Diabetes.
2018 Apr 18
Li NX, Brown S, Kowalski T, Wu M, Yang L, Dai G, Petrov A, Ding Y, Dlugos T, Woods HB, Wang L, Erion M, Sherwin R, Kelley DE.
PMID: 29669745 | DOI: 10.2337/db18-0031
Insulin-induced hypoglycemia in diabetes is associated with impaired glucagon secretion. Here we tested whether stimulation of GPR119, a G-protein coupled receptor expressed in pancreatic islet as well as enteroendocrine cells, and previously shown to stimulate insulin and incretin secretion might enhance glucagon secretion during hypoglycemia. In the study, GPR119 agonists were applied to isolated islets or perfused pancreata perfusions to assess insulin and glucagon secretion during hypoglycemia or hyperglycemic conditions. Insulin infusion hypoglycemic clamps were performed with or without GPR119 agonist pre-treatment to assess glucagon counter-regulation in healthy and STZ-diabetic rats, including those exposed to recurrent bouts of insulin-induced hypoglycemia that leads to suppression of hypoglycemia-induced glucagon release. Hypoglycemic clamp studies were also conducted in GPR119 KO mice to evaluate whether the pharmacologic stimulatory actions of GPR119 agonists on glucagon secretion during hypoglycemia were an on-target effect. The results revealed that GPR119 agonist-treated pancreata or cultured islets had increased glucagon secretion during low glucose perfusion. In vivo, GPR119 agonists also significantly increased glucagon secretion during hypoglycemia in healthy and STZ-diabetic rats, a response that was absent in GPR119 KO mice. In addition, impaired glucagon counter-regulatory responses were restored by a GPR119 agonist in STZ-diabetic rats that were exposed to antecedent bouts of hypoglycemia. Thus, GPR119 agonists have the ability to pharmacologically augment glucagon secretion, specifically in response to hypoglycemia in diabetic rodents. Whether this effect might serve to diminish the occurrence and severity of iatrogenic hypoglycemia during intensive insulin therapy in diabetic patients remains to be established.
Diabetes Obes Metab.
2017 Jan 17
Kirk RK, Pyke C, von Herrath MG, Hasselby JP, Pedersen L, Mortensen PG, Bjerre Knudsen L, Coppieters K.
PMID: 28094469 | DOI: 10.1111/dom.12879
Glucagon-like peptide-1 (GLP-1) is an incretin hormone which stimulates insulin release and inhibits glucagon secretion from the pancreas in a glucose-dependent manner. Incretin-based therapies, consisting of GLP-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, are used for the treatment of T2D. Immunohistochemical studies for GLP-1R expression have previously been hampered by the use of unspecific polyclonal antibodies. This study used a new monoclonal antibody to assess GLP-1R expression in pancreatic tissue from 23 patients with T2D, including 7 with a DPP-4 inhibitor and 1 with a GLP-1R agonist treatment history. A software-based automated image analysis algorithm was used for quantitating intensities and area fractions of GLP-1R positive compartments. The highest intensity GLP-1R immunostaining was seen in beta-cells in islets (average signal intensity 76,1 (± 8, 1)). GLP-1R/insulin double-labelled single cells or small clusters of cells were also frequently located within or in close vicinity of ductal epithelium in all samples and with the same GLP-1R immunostaining intensity as found in beta-cells in islets. In the exocrine pancreas a large proportion of acinar cells expressed GLP-1R with a 3-fold lower intensity of immunoreactivity as compared to beta-cells (average signal intensity 25,5 (± 3,3)). Our studies did not unequivocally demonstrate GLP-1R immunoreactivity on normal-appearing ductal epithelium. Pancreatic intraepithelial neoplasia (PanINs; a form of non-invasive pancreatic ductular neoplasia) were seen in most samples, and a minority of these expressed low levels of GLP-1R. These data confirm the ubiquity of early stage PanIN lesions in patients with T2D and do not support the hypothesis that incretin-based therapies are associated with progression towards the more advanced stage PanIN lesions.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com