Hebsgaard JB, Pyke C, Yildirim E, Knudsen LB, Heegaard S, Kvist PH.
PMID: 29707863 | DOI: 10.1111/dom.13339
Semaglutide is a human glucagon-like peptide-1 (GLP-1) analogue that is in development for the treatment of type 2 diabetes. In the pre-approval cardiovascular outcomes trial SUSTAIN 6, semaglutide was associated with a significant increase in the risk of diabetic retinopathy (DR) complications vs placebo. GLP-1 receptor (GLP-1R) expression has previously been demonstrated in the retina in animals and humans; however, antibodies used to detect expression have been documented to be non-specific and fail to detect the GLP-1R using immunohistochemistry (IHC), a problem common for many G-protein coupled receptors. Using a validated GLP-1R antibody for IHC and in situ hybridization for GLP-1R mRNA in normal human eyes, GLP-1Rs were detected in a small fraction of neurons in the ganglion cell layer. In advanced stages of DR, GLP-1R expression was not detected at the protein or mRNA level. Specifically, no GLP-1R expression was found in the eyes of people with long-standing proliferative DR (PDR). In conclusion, GLP-1R expression is low in normal human eyes and was not detected in eyes exhibiting advanced stages of PDR.
Brix, LM;Toksöz, I;Aman, L;Kovarova, V;Springer, M;Bordes, J;van Doeselaar, L;Engelhardt, C;Häusl, AS;Narayan, S;Sterlemann, V;Yang, H;Deussing, JM;Schmidt, MV;
PMID: 36007872 | DOI: 10.1016/j.molmet.2022.101579
Steroidogenic factor 1 (SF1) expressing neurons in the ventromedial hypothalamus (VMH) have been directly implicated in whole-body metabolism and in the onset of obesity. The co-chaperone FKBP51 is abundantly expressed in the VMH and was recently linked to type 2 diabetes, insulin resistance, adipogenesis, browning of white adipose tissue (WAT) and bodyweight regulation.We investigated the role of FKBP51 in the VMH by conditional deletion and virus-mediated overexpression of FKBP51 in SF1-positive neurons. Baseline and high fat diet (HFD)-induced metabolic- and stress-related phenotypes in male and female mice were obtained.In contrast to previously reported robust phenotypes of FKBP51 manipulation in the entire mediobasal hypothalamus (MBH), selective deletion or overexpression of FKBP51 in the VMH resulted in only a moderate alteration of HFD-induced bodyweight gain and body composition, independent of sex.Overall, this study shows that animals lacking and overexpressing Fkbp5 in Sf1-expressing cells within the VMH display only a mild metabolic phenotype compared to an MBH-wide manipulation of this gene, suggesting that FKBP51 in SF1 neurons within this hypothalamic nucleus plays a subsidiary role in controlling whole-body metabolism.
International journal of molecular sciences
Al Doghmi, A;Barta, BP;Egyed-Kolumbán, A;Onhausz, B;Kiss, S;Balázs, J;Szalai, Z;Bagyánszki, M;Bódi, N;
PMID: 36982878 | DOI: 10.3390/ijms24065804
Interleukin 1β (IL1β) is a pro-inflammatory cytokine that may play a crucial role in enteric neuroinflammation in type 1 diabetes. Therefore, our goal is to evaluate the effects of chronic hyperglycemia and insulin treatment on IL1β immunoreactivity in myenteric neurons and their different subpopulations along the duodenum-ileum-colon axis. Fluorescent immunohistochemistry was used to count IL1β expressing neurons as well as the neuronal nitric oxide synthase (nNOS)- and calcitonin gene-related peptide (CGRP)-immunoreactive myenteric neurons within this group. Tissue IL1β level was measured by ELISA in muscle/myenteric plexus-containing homogenates. IL1β mRNA was detected by RNAscope in different intestinal layers. The proportion of IL1β-immunoreactive myenteric neurons was significantly higher in the colon than in the small intestine of controls. In diabetics, this proportion significantly increased in all gut segments, which was prevented by insulin treatment. The proportion of IL1β-nNOS-immunoreactive neurons only increased in the diabetic colon, while the proportion of IL1β-CGRP-immunoreactive neurons only increased in the diabetic ileum. Elevated IL1β levels were also confirmed in tissue homogenates. IL1β mRNA induction was detected in the myenteric ganglia, smooth muscle and intestinal mucosa of diabetics. These findings support that diabetes-related IL1β induction is specific for the different myenteric neuronal subpopulations, which may contribute to diabetic motility disturbances.
Dalbøgea LS, Pedersena SL, Sechera T, Holstb B, Vranga N, Jelsinga J.
PMID: 25895852 | DOI: 10.1016/j.peptides.2015.04.010
Neuromedin U (NMU) is a gut-brain peptide, implicated in energy and glucose homeostasis via the peripherally expressed NMU receptor 1 (NMUR1) and the central NMUR2. We investigated the effects of a lipidated NMU analog on gastric emptying (GE), glucose homeostasis and food intake to evaluate the use of a NMU analog as drug candidate for treatment of obesity and diabetes. Finally mRNA expression of NMU and NMUR1 in the gut and NMUR2 in the hypothalamus was investigated using a novel chromogen-based in situ hybridization (ISH) assay. Effects on food intake (6 and 18 h post dosing) were addressed in both mice and rats. The effects on GE and glycaemic control were assessed in mice, immediately after the first dose and after seven days of bidaily (BID) dosing. The lipidated NMU analog exerted robust reductions in GE and food intake in mice and improved glycaemic control when measured immediately after the first dose. No effects were observed after seven days BID. In rats, the analog induced only a minor effect on food intake. NMU mRNA was detected in the enteric nervous system throughout the gut, whereas NMUR1 was confined to the lamina propria. NMUR2 was detected in the paraventricular (PVN) and arcuate nuclei (ARC) in mice, with a reduced expression in ARC in rats. In summary, the anorectic effect of the lipidated NMU is partly mediated by a decrease in gastric emptying which is subject to tachyphylaxis after continuous dosing. Susceptibility to NMU appears to be species specific.
Acta histochemica et cytochemica, 46(1), 35–42.
Takata S, Sawa Y, Uchiyama T, Ishikawa H (2013).
PMID: 23554538 | DOI: 10.1267/ahc.13002.
Diabetic conditions promote glomerulosclerosis by mesangial cells but the mechanisms are not fully elucidated. The present study evaluated the expression of toll-like receptor 4 in glomerular endothelial cells in the streptozotocin (STZ)-induced type 1 diabetic mouse (ICR-STZ) and the type 2 diabetic KK/TaJcl mouse which were fed a high fat diet feed (KK/Ta-HF). In the ICR-STZ and KK/Ta-HF almost glomeruli were immunostained with anti-TLR4 but there was no glomerulus immunostained by ani-TLR4 in the control ICR and KK/Ta. Laser-scanning confocal microscopy showed that the TLR4-positive region did not coincide with the podoplanin-positive region but coincide with the PECAM-1- and VE-cadherin-positive regions in the glomeruli of the ICR-STZ and KK/Ta-HF. The in situ hybridization showed that almost signals for TLR4 mRNA were present in the glomerulus of the ICR-STZ and KK/Ta-HF to a stronger extent than in the control ICR and KK/Ta. These suggest that glomerular endothelial cells usually express the TLR4 gene and hyperglycemia in the diabetic condition induces the TLR4 protein expression in the glomerular capillary endothelial cells. Cytokine productions through the TLR signaling pathway in glomerular endothelial cells may allow mesangial cells to produce extracellular matrix proteins in the diabetic milieu.
Kang, RB;Li, Y;Rosselot, C;Zhang, T;Siddiq, M;Rajbhandari, P;Stewart, AF;Scott, DK;Garcia-Ocana, A;Lu, G;
PMID: 37127706 | DOI: 10.1186/s13073-023-01179-2
Single-cell RNA sequencing (scRNA-seq) provides valuable insights into human islet cell types and their corresponding stable gene expression profiles. However, this approach requires cell dissociation that complicates its utility in vivo. On the other hand, single-nucleus RNA sequencing (snRNA-seq) has compatibility with frozen samples, elimination of dissociation-induced transcriptional stress responses, and affords enhanced information from intronic sequences that can be leveraged to identify pre-mRNA transcripts.We obtained nuclear preparations from fresh human islet cells and generated snRNA-seq datasets. We compared these datasets to scRNA-seq output obtained from human islet cells from the same donor. We employed snRNA-seq to obtain the transcriptomic profile of human islets engrafted in immunodeficient mice. In both analyses, we included the intronic reads in the snRNA-seq data with the GRCh38-2020-A library.First, snRNA-seq analysis shows that the top four differentially and selectively expressed genes in human islet endocrine cells in vitro and in vivo are not the canonical genes but a new set of non-canonical gene markers including ZNF385D, TRPM3, LRFN2, PLUT (β-cells); PTPRT, FAP, PDK4, LOXL4 (α-cells); LRFN5, ADARB2, ERBB4, KCNT2 (δ-cells); and CACNA2D3, THSD7A, CNTNAP5, RBFOX3 (γ-cells). Second, by integrating information from scRNA-seq and snRNA-seq of human islet cells, we distinguish three β-cell sub-clusters: an INS pre-mRNA cluster (β3), an intermediate INS mRNA cluster (β2), and an INS mRNA-rich cluster (β1). These display distinct gene expression patterns representing different biological dynamic states both in vitro and in vivo. Interestingly, the INS mRNA-rich cluster (β1) becomes the predominant sub-cluster in vivo.In summary, snRNA-seq and pre-mRNA analysis of human islet cells can accurately identify human islet cell populations, subpopulations, and their dynamic transcriptome profile in vivo.
Molecular Vision 2014; 20:1443-1455
Abstract
Purpose: Recent studies have provided evidence that a local renin-angiotensin system (RAS) exists in the retina and plays an important role in retinal neurovascular function. We have recently shown that increased expression of ACE2 and angiotensin (1-7) [Ang (1-7)], two components of the protective axis of the RAS, in the retina via adeno-associated virus (AAV)-mediated gene delivery, conferred protection against diabetes-induced retinopathy. We hypothesized that the protective molecular and cellular mechanisms of Ang (1-7) are mediated by its receptor, Mas, and the expression level and cellular localization dictate the response to Ang (1-7) and activation of subsequent protective signaling pathways. We tested this hypothesis by examining the expression and cellular localization of the Mas receptor in adult and developing mouse retinas.
Methods: The cellular localization of the Mas receptor protein was determined with immunofluorescence of the eyes of adult and postnatal day 1 (P1), P5, P7, P15, and P21 mice using the Mas receptor-specific antibody, and mRNA was detected with in situ hybridization of paraffin-embedded sections. Western blotting and real-time reverse-transcription (RT)–PCR analysis were performed to determine the relative levels of the Mas protein and mRNA in adult and developing retinas, as well as in cultured retinal Müller glial and RPE cells.
Results: In the adult eye, the Mas receptor protein was abundantly present in retinal ganglion cells (RGCs) and photoreceptor cells; a lower level of expression was observed in endothelial cells, Müller glial cells, and other neurons in the inner nuclear layer of the retina. In the developing retina, Mas receptor mRNA and protein expression was detected in the inner retina at P1, and the expression levels increased with age to reach the adult level and pattern by P15. In the adult mouse retina, Mas receptor mRNA was expressed at a much higher level when compared to angiotensin II (Ang II) type I (AT1R) and type II (AT2R) receptor mRNA.
Conclusions: The Mas receptor is expressed in developing and adult mouse retinas, and is more abundant in retinal neurons than in endothelial and Müller glial cells. These observations suggest that Mas receptor-mediated signaling may play important roles that extend beyond mediating the vascular effects of Ang (1-7) in developing and adult retinas. In addition, the relatively high expression of the Mas receptor when compared to AT1R suggests that they may play a more important role in maintaining normal retinal physiology than previously considered.
PLoS One. 2014 May 16;9(5):e97165.
Sawa Y, Takata S, Hatakeyama Y, Ishikawa H, Tsuruga E.
PMID: 24835775 | DOI: 10.1371/journal.pone.0097165.
The toll-like receptor (TLR) has been suggested as a candidate cause for diabetic nephropathy. Recently, we have reported the TLR4 expression in diabetic mouse glomerular endothelium. The study here investigates the effects of the periodontal pathogen Porphyromonas gingivalis lipopolysaccharide (LPS) which is a ligand for TLR2 and TLR4 in diabetic nephropathy. In laser-scanning microscopy of glomeruli of streptozotocin- and a high fat diet feed-induced type I and type II diabetic mice, TLR2 localized on the glomerular endothelium and proximal tubule epithelium. The TLR2 mRNA was detected in diabetic mouse glomeruli by in situ hybridization and in real-time PCR of the renal cortex, the TLR2 mRNA amounts were larger in diabetic mice than in non-diabetic mice. All diabetic mice subjected to repeated LPS administrations died within the survival period of all of the diabetic mice not administered LPS and of all of the non-diabetic LPS-administered mice. The LPS administration promoted the production of urinary protein, the accumulation of type I collagen in the glomeruli, and the increases in IL-6, TNF-α, and TGF-β in the renal cortex of the glomeruli of the diabetic mice. It is thought that blood TLR ligands like Porphyromonas gingivalis LPS induce the glomerular endothelium to produce cytokines which aid glomerulosclerosis. Periodontitis may promote diabetic nephropathy.
Timper K, Denson JL, Steculorum SM, Heilinger C, Engström-Ruud L, Wunderlich CM, Rose-John S, Wunderlich FT, Brüning JC.
PMID: 28402851 | DOI: 10.1016/j.celrep.2017.03.043
Interleukin (IL)-6 engages similar signaling mechanisms to leptin. Here, we find that central application of IL-6 in mice suppresses feeding and improves glucose tolerance. In contrast to leptin, whose action is attenuated in obesity, the ability of IL-6 to suppress feeding is enhanced in obese mice. IL-6 suppresses feeding in the absence of neuronal IL-6-receptor (IL-6R) expression in hypothalamic or all forebrain neurons of mice. Conversely, obese mice exhibit increased soluble IL-6R levels in the cerebrospinal fluid. Blocking IL-6 trans-signaling in the CNS abrogates the ability of IL-6 to suppress feeding. Furthermore, gp130 expression is enhanced in the paraventricular nucleus of the hypothalamus (PVH) of obese mice, and deletion of gp130 in the PVH attenuates the beneficial central IL-6 effects on metabolism. Collectively, these experiments indicate that IL-6 trans-signaling is enhanced in the CNS of obese mice, allowing IL-6 to exert its beneficial metabolic effects even under conditions of leptin resistance.
Molecular and cellular endocrinology
Drexler, S;Cai, C;Hartmann, AL;Moch, D;Gaitantzi, H;Ney, T;Kraemer, M;Chu, Y;Zheng, Y;Rahbari, M;Treffs, A;Reiser, A;Lenoir, B;Valous, NA;Jäger, D;Birgin, E;Sawant, TA;Li, Q;Xu, K;Dong, L;Otto, M;Itzel, T;Teufel, A;Gretz, N;Hawinkels, LJAC;Sánchez, A;Herrera, B;Schubert, R;Moshage, H;Reissfelder, C;Ebert, MPA;Rahbari, NN;Breitkopf-Heinlein, K;
PMID: 37085108 | DOI: 10.1016/j.mce.2023.111934
Bone morphogenetic protein (BMP)-9, a member of the TGFβ-family of cytokines, is believed to be mainly produced in the liver. The serum levels of BMP-9 were reported to be reduced in newly diagnosed diabetic patients and BMP-9 overexpression ameliorated steatosis in the high fat diet-induced obesity mouse model. Furthermore, injection of BMP-9 in mice enhanced expression of fibroblast growth factor (FGF)21. However, whether BMP-9 also regulates the expression of the related FGF19 is not clear. Because both FGF21 and 19 were described to protect the liver from steatosis, we have further investigated the role of BMP-9 in this context. We first analyzed BMP-9 levels in the serum of streptozotocin (STZ)-induced diabetic rats (a model of type I diabetes) and confirmed that BMP-9 serum levels decrease during diabetes. Microarray analyses of RNA samples from hepatic and intestinal tissue from BMP-9 KO- and wild-type mice (C57/Bl6 background) pointed to basal expression of BMP-9 in both organs and revealed a down-regulation of hepatic Fgf21 and intestinal Fgf19 in the KO mice. Next, we analyzed BMP-9 levels in a cohort of obese patients with or without diabetes. Serum BMP-9 levels did not correlate with diabetes, but hepatic BMP-9 mRNA expression negatively correlated with steatosis in those patients that did not yet develop diabetes. Likewise, hepatic BMP-9 expression also negatively correlated with serum LPS levels. In situ hybridization analyses confirmed intestinal BMP-9 expression. Intestinal (but not hepatic) BMP-9 mRNA levels were decreased with diabetes and positively correlated with intestinal E-Cadherin expression. In vitro studies using organoids demonstrated that BMP-9 directly induces FGF19 in gut but not hepatocyte organoids, whereas no evidence of a direct induction of hepatic FGF21 by BMP-9 was found. Consistent with the in vitro data, a correlation between intestinal BMP-9 and FGF19 mRNA expression was seen in the patients' samples. In summary, our data confirm that BMP-9 is involved in diabetes development in humans and in the control of the FGF-axis. More importantly, our data imply that not only hepatic but also intestinal BMP-9 associates with diabetes and steatosis development and controls FGF19 expression. The data support the conclusion that increased levels of BMP-9 would most likely be beneficial under pre-steatotic conditions, making supplementation of BMP-9 an interesting new approach for future therapies aiming at prevention of the development of a metabolic syndrome and liver steatosis.
Thivolet C, Vial G, Cassel R, Rieusset J, Madec AM.
PMID: 28742858 | DOI: 10.1371/journal.pone.0182027
Type 2 diabetes develops when beta cells are not able to fulfill insulin needs. The role of the endoplasmic reticulum-mitochondria junction in coordinating the functions of these two organelles throughout the natural history of type 2 diabetes is determinant and may explain the alterations of insulin biosynthesis. Our goal was to study endoplasmic reticulum and mitochondrial interactions in human beta cells from organ donors with type 2 diabetes. Pancreas samples were obtained via the network for pancreatic organ donors with diabetes (nPOD) based on disease status with 12 subjects with type 2 diabetes and 9 non-diabetic controls. We examined pancreatic specimens by immunofluorescence, in situ hybridization and in situ proximity ligation assay and compared the results to an in vitro model of beta-cell dysfunction. Expression of proteins that enable tethering and exchanges between endoplasmic reticulum (ER) and mitochondria and quantification of interconnection through mitochondria associated membranes (MAM) was investigated. In beta cells from type 2 diabetic cases as compared to controls, there was a significant increase in reticular expression of inositol triphosphate receptor-2 (IP3R2) both at the protein and mRNA levels, no difference in mitochondrial transit peptide receptor TOM20 and mitofusin-2 expressions, and a decrease in the expression of voltage-dependent anion channel-1 (VDAC-1). The number of IP3R2-VDAC-1 complexes identified by in situ proximity ligation assay was significantly lower in diabetic islets and in beta cells of diabetics as compared to controls. Treatment of Min6-B1 cells with palmitate altered glucose-stimulated insulin secretion, increased ER stress and significantly reduced ER-mitochondrial interactions. We can conclude that specific changes in reticular and mitochondrial beta cell proteins characterize human type 2 diabetes with reduction in organelle interactions. This finding opens new targets of intervention.
Lu, B;Chen, J;Xu, G;Grayson, TB;Jing, G;Jo, S;Shalev, A;
PMID: 35957590 | DOI: 10.1210/endocr/bqac133
Thioredoxin-interacting protein (Txnip) has emerged as a key factor in pancreatic beta cell biology and its upregulation by glucose and diabetes contributes to the impairment in functional beta cell mass and glucose homeostasis. In addition, beta cell deletion of Txnip protects against diabetes in different mouse models. However, while Txnip is ubiquitously expressed, its role in pancreatic alpha cells has remained elusive. We therefore now generated an alpha cell Txnip knockout (aTKO) mouse and assessed the effects on glucose homeostasis. While no significant changes were observed on regular chow, after a 30-week high-fat diet, aTKO animals showed improvement in glucose tolerance and lower blood glucose levels compared to their control littermates. Moreover, in the context of streptozotocin (STZ)-induced diabetes, aTKO mice showed significantly lower blood glucose levels compared to controls. While serum insulin levels were reduced in both control and aTKO mice, STZ-diabetes significantly increased glucagon levels in control mice, but this effect was blunted in aTKO mice. Moreover, glucagon secretion from aTKO islets was >2-fold lower than from control islets, while insulin secretion was unchanged in aTKO islets. At the same time, no change in alpha cell or beta cell numbers or mass was observed and glucagon and insulin expression and content were comparable in isolated islets from aTKO and control mice. Thus, together the current studies suggest that downregulation of alpha cell Txnip is associated with reduced glucagon secretion and that this may contribute to the glucose-lowering effects observed in diabetic aTKO mice.