Juraska, J;
| DOI: 10.1101/lm.053499.121
Sex differences occur in the structure and function of the rat cerebral cortex and hippocampus, which can change from the juvenile period through old age. Although the evidence is incomplete, it appears that in at least some portions of the cortex these differences develop due to the rise of ovarian hormones at puberty and are potentially not dependent on the perinatal rise in testosterone, which is essential for sexual differentiation of the hypothalamus and sexual behavior. During aging of female rats, the presence of continued ovarian hormone secretion after cessation of the estrous cycle also influences sex differences in neuroanatomical structure and cognitive behavior, resulting in nullification or reversal of sex differences seen in younger adults. Sex differences can be altered by experience in a stimulating environment during the juvenile/adolescent period, and sex differences in performance even can be affected by the parameters of a task. Thus, broad generalizations about differences such as “spatial ability” are to be avoided. It is clear that to understand how the brain produces behavior, sex and hormones have to be taken into account.
Clayton, SW;Angermeier, A;Halbrooks, JE;McCardell, R;Serra, R;
PMID: 35644252 | DOI: 10.1016/j.ydbio.2022.05.013
We previously showed the importance of TGFβ signaling in development of the mouse axial skeleton. Here, we provide the first direct evidence that TGFβ signaling is required for resegmentation of the sclerotome using chick embryos. Lipophilic fluorescent tracers, DiO and DiD, were microinjected into adjacent somites of embryos treated with or without TGFβRI inhibitors, SB431542, SB525334 or SD208, at developmental day E2.5 (HH16). Lineage tracing of labeled cells was observed over the course of 4 days until the completion of resegmentation at E6.5 (HH32). Vertebrae were malformed and intervertebral discs were small and misshapen in inhibitor injected embryos. Hypaxial myofibers were also increased in thickness after treatment with the inhibitor. Inhibition of TGFβ signaling resulted in alterations in resegmentation that ranged between full, partial, and slanted shifts in distribution of DiO or DiD labeled cells within vertebrae. Patterning of rostro-caudal markers within sclerotome was disrupted at E3.5 after treatment with TGFβRI inhibitor with rostral domains expressing both rostral and caudal markers. We propose that TGFβ signaling regulates rostro-caudal polarity and subsequent resegmentation in sclerotome during spinal column development.
American journal of physiology. Renal physiology
Dickinson, K;Hammond, L;Akpa, M;Chu, LL;Lalonde, CT;Goumba, A;Goodyer, P;
PMID: 36546838 | DOI: 10.1152/ajprenal.00207.2022
Mammalian nephrons arise from a population of nephron progenitor cells (NPCs) expressing the master transcription factor, WT1, which is crucial for NPC proliferation, migration, and differentiation. In humans, biallelic loss of WT1 precludes nephrogenesis and leads to formation of Wilms tumor precursor lesions. We hypothesize that WT1 normally primes the NPC for nephrogenesis by inducing expression of NPC-specific DNA-repair genes that protect the genome. We analyzed transcript levels for a panel of DNA-repair genes in E17.5 vs adult mouse kidneys and noted seven that were increased >20-fold. We then isolated d1(+) NPCs from E17.5 kidneys and found that only one, Neil3, was enriched. RNAscope ISH of E17.5 mouse kidneys showed increased Neil3 expression in the nephrogenic zone vs mature nephron structures. To determine whether Neil3-expression is WT1-dependent, we knocked down Wt1 in d1(+) NPCs (60% knockdown efficiency) and noted a 58% reduction in Neil3 transcript levels. We showed that WT1 directly binds to the Neil3 promoter and that activity of a Neil3 promoter-reporter vector was increased two-fold in WT1(+) vs WT1(-) cells. We propose that Neil3 is a WT1-dependent DNA-repair gene, expressed at high levels in d1(+) NPCs where it repairs mutational injury to the genome during nephrogenesis. NEIL3 is likely just one of many such lineage-specific repair mechanisms that respond to genomic injury during kidney development.
Brain, behavior, and immunity
Reinl, EL;Blanchard, AC;Graham, EL;Edwards, S;Dionisos, C;McCarthy, MM;
PMID: 36049705 | DOI: 10.1016/j.bbi.2022.08.012
Little is known about the peripheral immune cell (PIC) profile of the developing brain despite growing appreciation for these cells in the mature nervous system. To address this gap, the PIC profile, defined as which cells are present, where they are located, and for how long, was examined in the developing rat using spectral flow cytometry. Select regions of the rat brain (cerebellum, hippocampus, and hypothalamus) were examined at embryonic day 20, and postnatal days 0, 7 and 16. At their peak (E20), PICs were most abundant in the cerebellum, then the hippocampus and hypothalamus. Within the PIC pool, monocytes were most prevalent in all regions and time points, and shifted from being majority classical at E20 to non-classical by PN7. T cells increased over time, and shifted from majority cytotoxic to T-helper cells by PN7. This suggests the PIC profile transitions from reactive to adaptive and surveilling in the second postnatal week. NK cells and mast cells increased temporarily, and mast cells were restricted to the hippocampus and hypothalamus, suggesting they may play a specific role in the development of those regions. Mimicking a viral infection by administration of Poly I:C increased the influx of PICs into the neonatal brain, particularly of NK cells and in the case of males only, non-classical monocytes. This work provides a map for researchers as they study immune cell contributions to healthy and pathological brain development.
Loss of Selenov predisposes mice to extra fat accumulation and attenuated energy expenditure
Chen, LL;Huang, JQ;Wu, YY;Chen, LB;Li, SP;Zhang, X;Wu, S;Ren, FZ;Lei, XG;
PMID: 34167027 | DOI: 10.1016/j.redox.2021.102048
Selenoprotein V (SELENOV) is a new and the least conserved member of the selenoprotein family. Herein we generated Selenov knockout (KO) mice to determine its in vivo function. The KO led to 16-19% increases (P < 0.05) in body weight that were largely due to 54% higher (P < 0.05) fat mass accumulation, compared with the wild-type (WT) controls. The extra fat accumulation in the KO mice was mediated by up-regulations of genes and proteins involved in lipogenesis (Acc, Fas, Dgat, and Lpl; up by 40%-1.1-fold) and down-regulations of lipolysis (Atgl, Hsl, Ces1d, and Cpt1a; down by 36-89%) in the adipose tissues. The KO also decreased (P < 0.05) VO2 consumption (14-21%), VCO2 production (14-16%), and energy expenditure (14-23%), compared with the WT controls. SELENOV and O-GlcNAc transferase (OGT) exhibited a novel protein-protein interaction that explained the KO-induced decreases (P < 0.05) of OGT protein (15-29%), activity (33%), and function (O-GlcNAcylation, 10-21%) in the adipose tissues. A potential cascade of SELENOV-OGT-AMP-activated protein kinase might serve as a central mechanism to link the biochemical and molecular responses to the KO. Overall, our data revealed a novel in vivo function and mechanism of SELENOV as a new inhibitor of body fat accumulation, activator of energy expenditure, regulator of O-GlcNAcylation, and therapeutic target of such related disorders.
Proceedings of the National Academy of Sciences of the United States of America
Gamal El-Din, TM;Lantin, T;Tschumi, CW;Juarez, B;Quinlan, M;Hayano, JH;Li, J;Zweifel, LS;Catterall, WA;
PMID: 34728568 | DOI: 10.1073/pnas.2112666118
Autism spectrum disorder (ASD) adversely impacts >1% of children in the United States, causing social interaction deficits, repetitive behaviors, and communication disorders. Genetic analysis of ASD has advanced dramatically through genome sequencing, which has identified >500 genes with mutations in ASD. Mutations that alter arginine gating charges in the voltage sensor of the voltage-gated potassium (KV) channel KV7 (KCNQ) are among those frequently associated with ASD. We hypothesized that these gating charge mutations would induce gating pore current (also termed ω-current) by causing an ionic leak through the mutant voltage sensor. Unexpectedly, we found that wild-type KV7 conducts outward gating pore current through its native voltage sensor at positive membrane potentials, owing to a glutamine in the third gating charge position. In bacterial and human KV7 channels, gating charge mutations at the R1 and R2 positions cause inward gating pore current through the resting voltage sensor at negative membrane potentials, whereas mutation at R4 causes outward gating pore current through the activated voltage sensor at positive potentials. Remarkably, expression of the KV7.3/R2C ASD-associated mutation in vivo in midbrain dopamine neurons of mice disrupts action potential generation and repetitive firing. Overall, our results reveal native and mutant gating pore current in KV7 channels and implicate altered control of action potential generation by gating pore current through mutant KV7 channels as a potential pathogenic mechanism in autism.
The Long and the Small Collide: LncRNAs and Small Heterodimer Partner (SHP) in Liver Disease
Molecular and cellular endocrinology
Wu, J;Nagy, LE;Wang, L;
PMID: 33781837 | DOI: 10.1016/j.mce.2021.111262
Long non-coding RNAs (lncRNAs) are a large and diverse class of RNA molecules that are transcribed but not translated into proteins, with a length of more than 200 nucleotides. LncRNAs are involved in gene expression and regulation. The abnormal expression of lncRNAs is associated with disease pathogenesis. Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that plays a pivotal role in many biological processes by acting as a transcriptional repressor. In this review, we present the critical roles of SHP and summarize recent findings demonstrating the regulation between lncRNAs and SHP in liver disease.
Liang, Q;Wang, S;Zhou, X;Li, Y;Xing, S;Sha, Y;Yang, F;Huang, W;Liu, N;Li, Z;Chen, Y;Xu, Y;Zhu, P;Lan, F;Sun, N;
PMID: 36413948 | DOI: 10.1016/j.devcel.2022.10.009
Heart development is controlled by a complex transcriptional network composed of transcription factors and epigenetic regulators. Mutations in key developmental transcription factor MESP1 and chromatin factors, such as PRC1 and cohesin components, have been found in human congenital heart diseases (CHDs), although their functional mechanism during heart development remains elusive. Here, we find that MESP1 interacts with RING1A/RING1, the core component of PRC1. RING1A depletion impairs human cardiomyocyte differentiation, and cardiac abnormalities similar to those in patients with MESP1 mutations were observed in Ring1A knockout mice. Mechanistically, MESP1 associates with RING1A to activate cardiogenic genes through promoter-enhancer interactions regulated by cohesin and CTCF and histone acetylation mediated by p300. Importantly, CHD mutations of MESP1 significantly affect such mechanisms and impair target gene activation. Together, our results demonstrate the importance of MESP1-RING1A complex in heart development and provide insights into the pathogenic mechanisms of CHDs caused by mutations in MESP1, PRC1, and cohesin components.
Development (Cambridge, England)
Hoyle, DJ;Dranow, DB;Schilling, TF;
PMID: 34919126 | DOI: 10.1242/dev.199826
Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.
Alves, MBR;Girardet, L;Augière, C;Moon, KH;Lavoie-Ouellet, C;Bernet, A;Soulet, D;Calvo, E;Teves, ME;Beauparlant, CJ;Droit, A;Bastien, A;Robert, C;Bok, J;Hinton, BT;Belleannée, C;
PMID: 36525341 | DOI: 10.1093/biolre/ioac210
Primary cilia play pivotal roles in embryonic patterning and organogenesis through transduction of the Hedgehog signaling pathway (Hh). While mutations in Hh morphogens impair the development of the gonads and trigger male infertility, the contribution of Hh and primary cilia in the development of male reproductive ductules, including the epididymis, remains unknown. From a Pax2Cre; Ift88fl/fl knock-out mouse model, we found that primary cilia deletion is associated with imbalanced Hh signaling and morphometric changes in the Wolffian duct (WD), the embryonic precursor of the epididymis. Similar effects were observed following pharmacological blockade of primary cilia formation and Hh modulation on WD organotypic cultures. The expression of genes involved in extracellular matrix (ECM), mesenchymal-epithelial transition, canonical Hh, and WD development was significantly altered after treatments. Altogether, we identified the primary cilia-dependent Hh signaling as a master regulator of genes involved in WD development. This provides new insights regarding the etiology of sexual differentiation and male infertility issues.
Relizani, K;Echevarría, L;Zarrouki, F;Gastaldi, C;Dambrune, C;Aupy, P;Haeberli, A;Komisarski, M;Tensorer, T;Larcher, T;Svinartchouk, F;Vaillend, C;Garcia, L;Goyenvalle, A;
PMID: 34893881 | DOI: 10.1093/nar/gkab1199
Tricyclo-DNA (tcDNA) is a conformationally constrained oligonucleotide analog that has demonstrated great therapeutic potential as antisense oligonucleotide (ASO) for several diseases. Like most ASOs in clinical development, tcDNA were modified with phosphorothioate (PS) backbone for therapeutic purposes in order to improve their biodistribution by enhancing association with plasma and cell protein. Despite the advantageous protein binding properties, systemic delivery of PS-ASO remains limited and PS modifications can result in dose limiting toxicities in the clinic. Improving extra-hepatic delivery of ASO is highly desirable for the treatment of a variety of diseases including neuromuscular disorders such as Duchenne muscular dystrophy. We hypothesized that conjugation of palmitic acid to tcDNA could facilitate the delivery of the ASO from the bloodstream to the interstitium of the muscle tissues. We demonstrate here that palmitic acid conjugation enhances the potency of tcDNA-ASO in skeletal and cardiac muscles, leading to functional improvement in dystrophic mice with significantly reduced dose of administered ASO. Interestingly, palmitic acid-conjugated tcDNA with a full phosphodiester backbone proved effective with a particularly encouraging safety profile, offering new perspectives for the clinical development of PS-free tcDNA-ASO for neuromuscular diseases.
An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice
Science translational medicine
Kimura, T;Bosakova, M;Nonaka, Y;Hruba, E;Yasuda, K;Futakawa, S;Kubota, T;Fafilek, B;Gregor, T;Abraham, SP;Gomolkova, R;Belaskova, S;Pesl, M;Csukasi, F;Duran, I;Fujiwara, M;Kavkova, M;Zikmund, T;Kaiser, J;Buchtova, M;Krakow, D;Nakamura, Y;Ozono, K;Krejci, P;
PMID: 33952673 | DOI: 10.1126/scitranslmed.aba4226
Achondroplasia is the most prevalent genetic form of dwarfism in humans and is caused by activating mutations in FGFR3 tyrosine kinase. The clinical need for a safe and effective inhibitor of FGFR3 is unmet, leaving achondroplasia currently incurable. Here, we evaluated RBM-007, an RNA aptamer previously developed to neutralize the FGFR3 ligand FGF2, for its activity against FGFR3. In cultured rat chondrocytes or mouse embryonal tibia organ culture, RBM-007 rescued the proliferation arrest, degradation of cartilaginous extracellular matrix, premature senescence, and impaired hypertrophic differentiation induced by FGFR3 signaling. In cartilage xenografts derived from induced pluripotent stem cells from individuals with achondroplasia, RBM-007 rescued impaired chondrocyte differentiation and maturation. When delivered by subcutaneous injection, RBM-007 restored defective skeletal growth in a mouse model of achondroplasia. We thus demonstrate a ligand-trap concept of targeting the cartilage FGFR3 and delineate a potential therapeutic approach for achondroplasia and other FGFR3-related skeletal dysplasias.