The Journal of biological chemistry
Brandebura, AN;Kolson, DR;Amick, EM;Ramadan, J;Kersting, MC;Nichol, RH;Holcomb, PS;Mathers, PH;Stoilov, P;Spirou, GA;
PMID: 35753346 | DOI: 10.1016/j.jbc.2022.102176
Neural tissue maturation is a coordinated process under tight transcriptional control. We previously analyzed the kinetics of gene expression in the medial nucleus of the trapezoid body (MNTB) in the brainstem during the critical postnatal phase of its development. While this work revealed timed execution of transcriptional programs, it was blind to the specific cells where gene expression changes occurred. Here, we utilized single-cell RNA-sequencing (scRNA-Seq) to determine transcriptional profiles of each major MNTB cell type. We discerned directional signaling patterns between neuronal, glial, and vascular-associated cells (VACs) for VEGF, TGFβ, and Delta-Notch pathways during a robust period of vascular remodeling in the MNTB. Furthermore, we describe functional outcomes of the disruption of neuron-astrocyte fibroblast growth factor 9 (Fgf9) signaling. We used a conditional knockout (cKO) approach to genetically delete Fgf9 from principal neurons in the MNTB, which led to an early onset of glial fibrillary acidic protein (Gfap) expression in astrocytes. In turn, Fgf9 cKO mice show increased levels of astrocyte-enriched brevican (Bcan), a component of the perineuronal net matrix (PNN) that ensheaths principal neurons in the MNTB and the large calyx of Held (CH) terminal, while levels of the neuron-enriched hyaluronan and proteoglycan link protein 1 (Hapln1) were unchanged. Finally, volumetric analysis of vesicular glutamate transporters 1 and 2 (Vglut1/2), which serves as a proxy for terminal size, revealed an increase in CH volume in the Fgf9 cKO. Overall, we demonstrate a coordinated neuron-astrocyte Fgf9 signaling network that functions to regulate astrocyte maturation, PNN structure, and synaptic refinement.
Development (Cambridge, England)
Singh, VP;Hassan, H;Deng, F;Tsuchiya, D;McKinney, S;Ferro, K;Gerton, JL;
PMID: 37158673 | DOI: 10.1242/dev.201581
The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but the regulators and significance in the placenta are unknown. We discovered that many murine placental cell types are polyploid. We identified factors that license polyploidy using single-cell RNA seq. c-Myc is a key regulator of polyploidy and placental development and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, c-MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without c-Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal c-Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study combined with the literature suggests c-Myc is an evolutionarily conserved regulator of polyploidy.
Lee, DR;Rhodes, C;Mitra, A;Zhang, Y;Maric, D;Dale, RK;Petros, TJ;
PMID: 35175194 | DOI: 10.7554/eLife.71864
The ventricular zone (VZ) of the nervous system contains radial glia cells that were originally considered relatively homogenous in their gene expression, but a detailed characterization of transcriptional diversity in these VZ cells has not been reported. Here, we performed single-cell RNA sequencing to characterize transcriptional heterogeneity of neural progenitors within the VZ and subventricular zone (SVZ) of the ganglionic eminences (GEs), the source of all forebrain GABAergic neurons. By using a transgenic mouse line to enrich for VZ cells, we characterize significant transcriptional heterogeneity, both between GEs and within spatial subdomains of specific GEs. Additionally, we observe differential gene expression between E12.5 and E14.5 VZ cells, which could provide insights into temporal changes in cell fate. Together, our results reveal a previously unknown spatial and temporal genetic diversity of VZ cells in the ventral forebrain that will aid our understanding of initial fate decisions in the forebrain.
New insights into molecular changes in skeletal muscle aging and disease: Differential alternative splicing and senescence
Mechanisms of ageing and development
Solovyeva, E;Ibebunjo, C;Utzinger, S;Eash, JK;Dunbar, A;Naumann, U;Zhang, Y;Serluca, FC;Demirci, S;Oberhauser, B;Black, F;Rausch, M;Hoersch, S;Meyer, A;
PMID: 34019916 | DOI: 10.1016/j.mad.2021.111510
Progressive loss of muscle mass and function due to muscle fiber atrophy and loss in the elderly and chronically ill is now defined as sarcopenia. It is a major contributor to loss of independence, disability, need of long-term care as well as overall mortality. Sarcopenia is a heterogenous disease and underlying mechanisms are not completely understood. Here, we newly identified and used Tmem158, alongside Cdkn1a, as relevant senescence and denervation markers (SDMs), associated with muscle fiber atrophy. Subsequent application of laser capture microdissection (LCM) and RNA analyses revealed age- and disease-associated differences in gene expression and alternative splicing patterns in a rodent sarcopenia model. Of note, genes exhibiting such differential alternative splicing (DAS) are mainly involved in the contractile function of the muscle. Many of these splicing events are also found in a mouse model for myotonic dystrophy type 1 (DM1), underscoring the premature aging phenotype of this disease. We propose to add differential alternative splicing to the hallmarks of aging.
Patzek, S;Liu, Z;de la O, S;Chang, S;Byrnes, L;Zhang, X;Ornitz, D;Sneddon, J;
| DOI: 10.1016/j.isci.2023.106500
Pancreatic development requires spatially and temporally controlled expression of growth factors derived from mesenchyme. Here, we report that in mice the secreted factor Fgf9 is expressed principally by mesenchyme and then mesothelium during early development, then subsequently by both mesothelium and rare epithelial cells by E12.5 and onwards. Global knockout of the Fgf9 gene resulted in the reduction of pancreas and stomach size, as well as complete asplenia. The number of early Pdx1+ pancreatic progenitors was reduced at E10.5, as was proliferation of mesenchyme at E11.5. Although loss of Fgf9 did not interfere with differentiation of later epithelial lineages, single-cell RNA-Sequencing identified transcriptional programs perturbed upon loss of Fgf9 during pancreatic development, including loss of the transcription factor Barx1. Lastly, we identified conserved expression patterns of FGF9 and receptors in human fetal pancreas, suggesting that FGF9 expressed by pancreatic mesenchyme may similarly affect the development of the human pancreas.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Young, LV;Wakelin, G;Cameron, AWR;Springer, SA;Ross, JP;Wolters, G;Murphy, JP;Arsenault, MG;Ng, S;Collao, N;De Lisio, M;Ljubicic, V;Johnston, APW;
PMID: 36190443 | DOI: 10.1096/fj.202200289RR
Cellular senescence is the irreversible arrest of normally dividing cells and is driven by the cell cycle inhibitors Cdkn2a, Cdkn1a, and Trp53. Senescent cells are implicated in chronic diseases and tissue repair through their increased secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Here, we use spatial transcriptomics and single-cell RNA sequencing (scRNAseq) to demonstrate that cells displaying senescent characteristics are "transiently" present within regenerating skeletal muscle and within the muscles of D2-mdx mice, a model of Muscular Dystrophy. Following injury, multiple cell types including macrophages and fibrog-adipogenic progenitors (FAPs) upregulate senescent features such as senescence pathway genes, SASP factors, and senescence-associated beta-gal (SA-β-gal) activity. Importantly, when these cells were removed with ABT-263, a senolytic compound, satellite cells are reduced, and muscle fibers were impaired in growth and myonuclear accretion. These results highlight that an "acute" senescent phenotype facilitates regeneration similar to skin and neonatal myocardium.