Osteocyte- and late Osteoblast-derived NOTUM Reduces Cortical Bone Mass in Mice
American journal of physiology. Endocrinology and metabolism
Nilsson, KH;Henning, P;El Shahawy, M;Wu, J;Koskela, A;Tuukkanen, J;Perret, C;Lerner, UH;Ohlsson, C;Movérare-Skrtic, S;
PMID: 33749332 | DOI: 10.1152/ajpendo.00565.2020
Osteoporosis is a common skeletal disease, with increased risk of fractures. Currently available osteoporosis treatments reduce the risk of vertebral fractures, mainly dependent on trabecular bone, whereas the effect on non-vertebral fractures, mainly dependent on cortical bone, is less pronounced. WNT signaling is a crucial regulator of bone homeostasis, and the activity of WNTs is inhibited by NOTUM, a secreted WNT lipase. We previously demonstrated that conditional inactivation of NOTUM in all osteoblast lineage cells increases the cortical but not the trabecular bone mass. The aim of the present study was to determine if NOTUM increasing cortical bone is derived from osteoblast precursors/early osteoblasts or from osteocytes/late osteoblasts. First, we demonstrated Notum mRNA expression in Dmp1-expressing osteocytes and late osteoblasts in cortical bone using in situ hybridization. We then developed a mouse model with inactivation of NOTUM in Dmp1 expressing osteocytes and late osteoblasts (Dmp1-creNotumflox/flox mice). We observed that the Dmp1-creNotumflox/flox mice displayed a substantial reduction of Notum mRNA in cortical bone, resulting in increased cortical bone mass and decreased cortical porosity in femur, but no change in trabecular bone volume fraction (BV/TV) in femur or in the lumbar vertebrae L5 in Dmp1-creNotumflox/flox mice as compared to control mice. In conclusion, osteocytes and late osteoblasts are the principal source of NOTUM in cortical bone, and NOTUM derived from osteocytes/late osteoblasts reduces cortical bone mass. These findings demonstrate that inhibition of osteocyte/late osteoblast-derived NOTUM might be an interesting pharmacological target to increase cortical bone mass and reduce non-vertebral fracture risk.
Invest Ophthalmol Vis Sci.
Sun M, Wadehra M, Casero D, Lin MC, Aguirre B, Parikh S, Matynia A, Gordon L, Chu A
PMID: 32031575 | DOI: 10.1167/iovs.61.2.3
PURPOSE:
Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. ROP occurs as a consequence of postnatal hyperoxia exposure in premature infants, resulting in vasoproliferation in the retina. The tetraspan protein epithelial membrane protein-2 (EMP2) is highly expressed in the retinal pigment epithelium (RPE) in adults, and it controls vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line. We, therefore, hypothesized that Emp2 knockout (Emp2 KO) protects against neovascularization in murine oxygen-induced retinopathy (OIR).
METHODS:
Eyes were obtained from wildtype (WT) and Emp2 KO mouse pups at P7, P12, P17, and P21 after normoxia or hyperoxia (P7-P12) exposure. Following hyperoxia exposure, RNA sequencing was performed using the retina/choroid layers obtained from WT and Emp2 KO at P17. Retinal sections from P7, P12, P17, and P21 were evaluated for Emp2, hypoxia-inducible factor 1? (Hif1?), and VEGF expression. Whole mount images were generated to assess vaso-obliteration at P12 and neovascularization at P17.
RESULTS:
Emp2 KO OIR mice demonstrated a decrease in pathologic neovascularization at P17 compared with WT OIR mice through evaluation of retinal vascular whole mount images. This protection was accompanied by a decrease in Hif1? at P12 and VEGFA expression at P17 in Emp2 KO animals compared with the WT animals in OIR conditions. Collectively, our results suggest that EMP2 enhances the effects of neovascularization through modulation of angiogenic signaling.
CONCLUSIONS:
The protection of Emp2 KO mice against pathologic neovascularization through attenuation of HIF and VEGF upregulation in OIR suggests that hypoxia-induced upregulation of EMP2 expression in the neuroretina modulates HIF-mediated neuroretinal VEGF expression
Distinct Cellular Profiles of Hif1a and Vegf mRNA Localization in Microglia, Astrocytes and Neurons during a Period of Vascular Maturation in the Auditory Brainstem of Neonate Rats
Chang, D;Brown, Q;Tsui, G;He, Y;Liu, J;Shi, L;Rodríguez-Contreras, A;
| DOI: 10.3390/brainsci11070944
Defining the relationship between vascular development and the expression of hypoxia-inducible factors (Hifs) and vascular endothelial growth factor (Vegf) in the auditory brainstem is important to understand how tissue hypoxia caused by oxygen shortage contributes to sensory deficits in neonates. In this study, we used histology, molecular labeling, confocal microscopy and 3D image processing methods to test the hypothesis that significant maturation of the vascular bed in the medial nucleus of the trapezoid body (MNTB) occurs during the postnatal period that precedes hearing onset. Isolectin-B4 histochemistry experiments suggested that the MNTB vasculature becomes more elaborate between P5 and P10. When combined with a cell proliferation marker and immunohistochemistry, we found that vascular growth coincides with a switch in the localization of proliferating cells to perivascular locations, and an increase in the density of microglia within the MNTB. Furthermore, microglia were identified as perivascular cells with proliferative activity during the period of vascular maturation. Lastly, combined in situ hybridization and immunohistochemistry experiments showed distinct profiles of Hif1a and Vegf mRNA localization in microglia, astrocytes and MNTB principal neurons. These results suggest that different cells of the neuro-glio-vascular unit are likely targets of hypoxic insult in the auditory brainstem of neonate rats.
RSPO3 is important for trabecular bone and fracture risk in mice and humans
Nilsson, KH;Henning, P;Shahawy, ME;Nethander, M;Andersen, TL;Ejersted, C;Wu, J;Gustafsson, KL;Koskela, A;Tuukkanen, J;Souza, PPC;Tuckermann, J;Lorentzon, M;Ruud, LE;Lehtimäki, T;Tobias, JH;Zhou, S;Lerner, UH;Richards, JB;Movérare-Skrtic, S;Ohlsson, C;
PMID: 34389713 | DOI: 10.1038/s41467-021-25124-2
With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
Oxidative Medicine and Cellular Longevity
Kirschner, K;Kelterborn, S;Stehr, H;Penzlin, J;Jacobi, C;Endesfelder, S;Sieg, M;Kruppa, J;Dame, C;Sciesielski, L;
| DOI: 10.1155/2022/9714669
During gestation, the most drastic change in oxygen supply occurs with the onset of ventilation after birth. As the too early exposure of premature infants to high arterial oxygen pressure leads to characteristic diseases, we studied the adaptation of the oxygen sensing system and its targets, the hypoxia-inducible factor- (HIF-) regulated genes (HRGs) in the developing lung. We draw a detailed picture of the oxygen sensing system by integrating information from qPCR, immunoblotting, in situ hybridization, and single-cell RNA sequencing data in ex vivo and in vivo models. HIF1α protein was completely destabilized with the onset of pulmonary ventilation, but did not coincide with expression changes in bona fide HRGs. We observed a modified composition of the HIF-PHD system from intrauterine to neonatal phases: Phd3 was significantly decreased, while Hif2a showed a strong increase and the Hif3a isoform Ipas exclusively peaked at P0. Colocalization studies point to the Hif1a-Phd1 axis as the main regulator of the HIF-PHD system in mouse lung development, complemented by the Hif3a-Phd3 axis during gestation. Hif3a isoform expression showed a stepwise adaptation during the periods of saccular and alveolar differentiation. With a strong hypoxic stimulus, lung ex vivo organ cultures displayed a functioning HIF system at every developmental stage. Approaches with systemic hypoxia or roxadustat treatment revealed only a limited in vivo response of HRGs. Understanding the interplay of the oxygen sensing system components during the transition from saccular to alveolar phases of lung development might help to counteract prematurity-associated diseases like bronchopulmonary dysplasia.
Mertz, E;Makareeva, E;Mirigian, L;Leikin, S;
| DOI: 10.1002/jbm4.10701
Relevance of mineralized nodules in two-dimensional (2D) osteoblast/osteocyte cultures to bone biology, pathology, and engineering is a decades old question, but a comprehensive answer appears to be still wanting. Bone-like cells, extracellular matrix (ECM), and mineral were all reported but so were non-bone-like ones. Many studies described seemingly bone-like cell-ECM structures based on similarity to few select bone features _in vivo_, yet no studies examined multiple bone features simultaneously and none systematically studied all types of structures coexisting in the same culture. Here, we report such comprehensive analysis of 2D cultures based on light and electron microscopies, Raman microspectroscopy, gene expression, and _in situ_ mRNA hybridization. We demonstrate that 2D cultures of primary cells from mouse calvaria do form _bona fide_ bone. Cells, ECM, and mineral within it exhibit morphology, structure, ultrastructure, composition, spatial-temporal gene expression pattern, and growth consistent with intramembranous ossification. However, this bone is just one of at least five different types of cell-ECM structures coexisting in the same 2D culture, which vary widely in their resemblance to bone and ability to mineralize. We show that the other two mineralizing structures may represent abnormal (disrupted) bone and cartilage-like formation with chondrocyte-to-osteoblast trans differentiation. The two non-mineralizing cell-ECM structures may mimic periosteal cambium and pathological, non-mineralizing osteoid. Importantly, the most commonly used culture conditions (10 mM β-glycerophosphate) induce artificial mineralization of all cell-ECM structures, which then become barely distinguishable. We therefore discuss conditions and approaches promoting formation of _bona fide_ bone and simple means for distinguishing it from the other cell-ECM structures. Our findings may improve osteoblast differentiation and function analyses based on 2D cultures and extend applications of these cultures to general bone biology and tissue engineering research.
Angelozzi, M;Pellegrino da Silva, R;Gonzalez, MV;Lefebvre, V;
PMID: 35830813 | DOI: 10.1016/j.celrep.2022.111045
The mammalian skull vault is essential to shape the head and protect the brain, but the cellular and molecular events underlying its development remain incompletely understood. Single-cell transcriptomic profiling from early to late mouse embryonic stages provides a detailed atlas of cranial lineages. It distinguishes various populations of progenitors and reveals a high expression of SOXC genes (encoding the SOX4, SOX11, and SOX12 transcription factors) early in development in actively proliferating and myofibroblast-like osteodermal progenitors. SOXC inactivation in these cells causes severe skull and skin underdevelopment due to the limited expansion of cell populations before and upon lineage commitment. SOXC genes enhance the expression of gene signatures conferring dynamic cellular and molecular properties, including actin cytoskeleton assembly, chromatin remodeling, and signaling pathway induction and responsiveness. These findings shed light onto craniogenic mechanisms and SOXC functions and suggest that similar mechanisms could decisively control many developmental, adult, pathological, and regenerative processes.
Dzamukova, M;Brunner, TM;Miotla-Zarebska, J;Heinrich, F;Brylka, L;Mashreghi, MF;Kusumbe, A;Kühn, R;Schinke, T;Vincent, TL;Löhning, M;
PMID: 35650194 | DOI: 10.1038/s41467-022-30618-8
Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.
Liang, T;Hu, Y;Zhang, H;Xu, Q;Smith, CE;Zhang, C;Kim, JW;Wang, SK;Saunders, TL;Lu, Y;Hu, JC;Simmer, JP;
PMID: 34667213 | DOI: 10.1038/s41598-021-00219-4
Non-syndromic inherited defects of tooth dentin are caused by two classes of dominant negative/gain-of-function mutations in dentin sialophosphoprotein (DSPP): 5' mutations affecting an N-terminal targeting sequence and 3' mutations that shift translation into the - 1 reading frame. DSPP defects cause an overlapping spectrum of phenotypes classified as dentin dysplasia type II and dentinogenesis imperfecta types II and III. Using CRISPR/Cas9, we generated a Dspp-1fs mouse model by introducing a FLAG-tag followed by a single nucleotide deletion that translated 493 extraneous amino acids before termination. Developing incisors and/or molars from this mouse and a DsppP19L mouse were characterized by morphological assessment, bSEM, nanohardness testing, histological analysis, in situ hybridization and immunohistochemistry. DsppP19L dentin contained dentinal tubules but grew slowly and was softer and less mineralized than the wild-type. DsppP19L incisor enamel was softer than normal, while molar enamel showed reduced rod/interrod definition. Dspp-1fs dentin formation was analogous to reparative dentin: it lacked dentinal tubules, contained cellular debris, and was significantly softer and thinner than Dspp+/+ and DsppP19L dentin. The Dspp-1fs incisor enamel appeared normal and was comparable to the wild-type in hardness. We conclude that 5' and 3' Dspp mutations cause dental malformations through different pathological mechanisms and can be regarded as distinct disorders.