The Journal of biological chemistry
Brandebura, AN;Kolson, DR;Amick, EM;Ramadan, J;Kersting, MC;Nichol, RH;Holcomb, PS;Mathers, PH;Stoilov, P;Spirou, GA;
PMID: 35753346 | DOI: 10.1016/j.jbc.2022.102176
Neural tissue maturation is a coordinated process under tight transcriptional control. We previously analyzed the kinetics of gene expression in the medial nucleus of the trapezoid body (MNTB) in the brainstem during the critical postnatal phase of its development. While this work revealed timed execution of transcriptional programs, it was blind to the specific cells where gene expression changes occurred. Here, we utilized single-cell RNA-sequencing (scRNA-Seq) to determine transcriptional profiles of each major MNTB cell type. We discerned directional signaling patterns between neuronal, glial, and vascular-associated cells (VACs) for VEGF, TGFβ, and Delta-Notch pathways during a robust period of vascular remodeling in the MNTB. Furthermore, we describe functional outcomes of the disruption of neuron-astrocyte fibroblast growth factor 9 (Fgf9) signaling. We used a conditional knockout (cKO) approach to genetically delete Fgf9 from principal neurons in the MNTB, which led to an early onset of glial fibrillary acidic protein (Gfap) expression in astrocytes. In turn, Fgf9 cKO mice show increased levels of astrocyte-enriched brevican (Bcan), a component of the perineuronal net matrix (PNN) that ensheaths principal neurons in the MNTB and the large calyx of Held (CH) terminal, while levels of the neuron-enriched hyaluronan and proteoglycan link protein 1 (Hapln1) were unchanged. Finally, volumetric analysis of vesicular glutamate transporters 1 and 2 (Vglut1/2), which serves as a proxy for terminal size, revealed an increase in CH volume in the Fgf9 cKO. Overall, we demonstrate a coordinated neuron-astrocyte Fgf9 signaling network that functions to regulate astrocyte maturation, PNN structure, and synaptic refinement.
Rurak, GM;Simard, S;Freitas-Andrade, M;Lacoste, B;Charih, F;Van Geel, A;Stead, J;Woodside, B;Green, JR;Coppola, G;Salmaso, N;
PMID: 35108542 | DOI: 10.1016/j.celrep.2022.110310
Astroglial cells are key players in the development and maintenance of neurons and neuronal networks. Astroglia express steroid hormone receptors and show rapid responses to hormonal manipulations. However, despite important sex differences in the cortex and hippocampus, few studies have examined sex differences in astroglial cells in telencephalic development. To characterize the cortical astroglial translatome in male and female mice across postnatal development, we use translating ribosome affinity purification together with RNA sequencing and immunohistochemistry to phenotype astroglia at six developmental time points. Overall, we find two distinct astroglial phenotypes between early (P1-P7) and late development (P14-adult), independent of sex. We also find sex differences in gene expression patterns across development that peak at P7 and appear to result from males reaching a mature astroglial phenotype earlier than females. These developmental sex differences could have an impact on the construction of neuronal networks and windows of vulnerability to perturbations and disease.
Lee, DR;Rhodes, C;Mitra, A;Zhang, Y;Maric, D;Dale, RK;Petros, TJ;
PMID: 35175194 | DOI: 10.7554/eLife.71864
The ventricular zone (VZ) of the nervous system contains radial glia cells that were originally considered relatively homogenous in their gene expression, but a detailed characterization of transcriptional diversity in these VZ cells has not been reported. Here, we performed single-cell RNA sequencing to characterize transcriptional heterogeneity of neural progenitors within the VZ and subventricular zone (SVZ) of the ganglionic eminences (GEs), the source of all forebrain GABAergic neurons. By using a transgenic mouse line to enrich for VZ cells, we characterize significant transcriptional heterogeneity, both between GEs and within spatial subdomains of specific GEs. Additionally, we observe differential gene expression between E12.5 and E14.5 VZ cells, which could provide insights into temporal changes in cell fate. Together, our results reveal a previously unknown spatial and temporal genetic diversity of VZ cells in the ventral forebrain that will aid our understanding of initial fate decisions in the forebrain.
Patzek, S;Liu, Z;de la O, S;Chang, S;Byrnes, L;Zhang, X;Ornitz, D;Sneddon, J;
| DOI: 10.1016/j.isci.2023.106500
Pancreatic development requires spatially and temporally controlled expression of growth factors derived from mesenchyme. Here, we report that in mice the secreted factor Fgf9 is expressed principally by mesenchyme and then mesothelium during early development, then subsequently by both mesothelium and rare epithelial cells by E12.5 and onwards. Global knockout of the Fgf9 gene resulted in the reduction of pancreas and stomach size, as well as complete asplenia. The number of early Pdx1+ pancreatic progenitors was reduced at E10.5, as was proliferation of mesenchyme at E11.5. Although loss of Fgf9 did not interfere with differentiation of later epithelial lineages, single-cell RNA-Sequencing identified transcriptional programs perturbed upon loss of Fgf9 during pancreatic development, including loss of the transcription factor Barx1. Lastly, we identified conserved expression patterns of FGF9 and receptors in human fetal pancreas, suggesting that FGF9 expressed by pancreatic mesenchyme may similarly affect the development of the human pancreas.
Muhl, L;Mocci, G;Pietilä, R;Liu, J;He, L;Genové, G;Leptidis, S;Gustafsson, S;Buyandelger, B;Raschperger, E;Hansson, EM;Björkegren, JLM;Vanlandewijck, M;Lendahl, U;Betsholtz, C;
PMID: 36283392 | DOI: 10.1016/j.devcel.2022.09.015
Smooth muscle cells (SMCs) execute important physiological functions in numerous vital organ systems, including the vascular, gastrointestinal, respiratory, and urogenital tracts. SMC differ morphologically and functionally at these different anatomical locations, but the molecular underpinnings of the differences remain poorly understood. Here, using deep single-cell RNA sequencing combined with in situ gene and protein expression analysis in four murine organs-heart, aorta, lung, and colon-we identify a molecular basis for high-level differences among vascular, visceral, and airway SMC, as well as more subtle differences between, for example, SMC in elastic and muscular arteries and zonation of elastic artery SMC along the direction of blood flow. Arterial SMC exhibit extensive organotypic heterogeneity, whereas venous SMC are similar across organs. We further identify a specific SMC subtype within the pulmonary vasculature. This comparative SMC cross-organ resource offers insight into SMC subtypes and their specific functions.
McCarthy, N;Tie, G;Madha, S;He, R;Kraiczy, J;Maglieri, A;Shivdasani, RA;
PMID: 36924771 | DOI: 10.1016/j.devcel.2023.02.012
Wnt and Rspondin (RSPO) signaling drives proliferation, and bone morphogenetic protein inhibitors (BMPi) impede differentiation, of intestinal stem cells (ISCs). Here, we identify the mouse ISC niche as a complex, multi-layered structure that encompasses distinct mesenchymal and smooth muscle populations. In young and adult mice, diverse sub-cryptal cells provide redundant ISC-supportive factors; few of these are restricted to single cell types. Niche functions refine during postnatal crypt morphogenesis, in part to oppose the dense aggregation of differentiation-promoting BMP+ sub-epithelial myofibroblasts at crypt-villus junctions. Muscularis mucosae, a specialized muscle layer, first appears during this period and supplements neighboring RSPO and BMPi sources. Components of this developing niche are conserved in human fetuses. The in vivo ablation of mouse postnatal smooth muscle increases BMP signaling activity, potently limiting a pre-weaning burst of crypt fission. Thus, distinct and progressively specialized mesenchymal cells together create the milieu that is required to propagate crypts during rapid organ growth and to sustain adult ISCs.