Experimental eye research
Wang, L;Sun, M;Zhang, Q;Dang, S;Zhang, W;
PMID: 35240198 | DOI: 10.1016/j.exer.2022.109020
ADAMTS18 is an orphan member of the ADAMTS family of metalloproteinase. ADAMTS18 mutation has been linked to developmental eye disorders, such as retinal dystrophies and ectopia lentis. Here, we report a new function of ADAMTS18 in modulating the lacrimal gland (LG) branching morphogenesis, and an association with dry eye in mice. Adamts18 mRNA was found to be enriched in the epithelium of branching tips of embryonic (E) LG, but its expression was barely detectable after 2 weeks of birth. Histological analyses of E16.5-E17.5 LG showed that ADAMTS18 deficiency resulted in a significant reduction of epithelial branching in embryonic LG. In vitro culture of E15.5 LG explants showed that the numbers of epithelial buds and branches in Adamts18 knockout (Adamts18-/-) LGs were significantly decreased when compared to those of wild type (Adamts18+/+) LGs after 0 h, 24 h, and 48 h of culture. Increased fibronectin deposition was detected in LG mesenchyme of E16.5 Adamts18-/- mice. At 14 months of age, Adamts18-/- mice manifested multiple LG pathological changes, including acinar atrophy and irregular duct ectasis with periductal fibrosis. The tear volume was significantly decreased in Adamts18-/- mice at 4 months of age, which corresponds to early adulthood in humans.
ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian duct and apoptosis of vaginal epithelial cells in mice
Lin, X;Wang, C;Zhang, Q;Pan, YH;Dang, S;Zhang, W;
PMID: 34271244 | DOI: 10.1016/j.repbio.2021.100537
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) enzymes are secreted metalloproteinases with major roles in development, morphogenesis, and tissue repair via the assembly and degradation of extracellular matrix (ECM). In this study, we investigated the role of ADAMTS18 in the development of the reproductive tract in female mice by phenotyping Adamts18 knockout (Adamts18-/-) mice. The results showed that Adamst18 mRNAs were abundantly expressed in vaginal epithelial cells and muscularis cells of the developing vagina. At the time of vaginal opening (5 weeks of age), about 41 % of Adamts18-/- females showed enlarged protrusions in the upper and middle parts of the vagina, reduced vaginal length, and simultaneously exhibited vaginal atresia. 6% Adamts18-/- females exhibited vaginal septum. Histological analyses revealed that the paired Mullerian ducts in ∼33 % female Adamts18-/- embryos failed to fuse at embryonic day 15.5 (E15.5) resulting in the formation of two vaginal cavities. Results of TUNEL assay and immunohistochemistry for caspase-3 showed that the number of apoptotic cells in the terminal portion of the vagina of 5-week-old Adamts18-/- females with vaginal atresia was significantly decreased. Adamts18-/- females also showed a significant decrease in serum estradiol E2 compared to age-matched Adamts18+/+ females. Results of qRT-PCR showed that the expression level of the anti-apoptosis gene Bcl-2 was significantly increased and that of the apoptosis-related gene Epha1 was decreased in the vagina of 5-week-old Adamts18-/- females. These results suggest that ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian ducts and apoptosis of vaginal cells in mice.
Nie, J;Zhang, W;
PMID: 36632911 | DOI: 10.1016/j.gene.2023.147169
ADAMTS18 was identified in 2002 as a member of the ADAMTS family of 19 secreted Zinc-dependent metalloproteinases. Prior to 2016, ADAMTS18 was known as a candidate gene associated with a wide range of pathologies, particularly various malignancies and eye disorders. However, functions and substrates of ADAMTS18 in normal conditions were unknown. Since 2016, with the development of Adamts18 knockout models, many studies had been conducted on the Adamts18 gene in vivo. These studies revealed that ADAMTS18 is essential for the morphology and organogenesis of several epithelial organs (e.g., lung, kidney, breast, salivary glands, and lacrimal glands), vascular and neuronal systems, adipose tissue, and reproductive tracts. In this review, we describe the current understanding of ADAMTS18 and its substrates and regulators. Limitations in translating new findings on ADAMTS18 to clinical practice are also discussed.
Childs, CJ;Holloway, EM;Sweet, CW;Tsai, YH;Wu, A;Vallie, A;Eiken, MK;Capeling, MM;Zwick, RK;Palikuqi, B;Trentesaux, C;Wu, JH;Pellon-Cardenas, O;Zhang, CJ;Glass, IA;Loebel, C;Yu, Q;Camp, JG;Sexton, JZ;Klein, OD;Verzi, MP;Spence, JR;
PMID: 36821371 | DOI: 10.1172/jci.insight.165566
Epithelial organoids derived from intestinal tissue, called 'enteroids', recapitulate many aspects of the organ in vitro, and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identify an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt. Enteroids generated from the developing human intestine grown in standard culture conditions, which contain EGF, are dominated by stem and progenitor cells, feature little differentiation and no spatial organization. Our results demonstrate that EREG can replace EGF in vitro, and EREG leads to spatially resolved enteroids that feature budded and proliferative crypt domains and a differentiated villus-like central lumen. Multiomic (transcriptome plus epigenome) profiling of native crypts, EGF-grown and EREG-grown enteroids show that EGF-enteroids have an altered chromatin landscape that is dependent on EGF concentration, downregulate the master intestinal transcription factor CDX2, and ectopically express stomach genes, a phenomenon that is reversible. This is in contrast to EREG-grown enteroids, which remain intestine-like in culture. Thus, EREG creates a homeostatic intestinal niche in vitro, enabling interrogation of stem cell function, cellular differentiation, and disease modeling.
Adamts18 modulates the development of aortic arch and common carotid artery
Ye, S;Yang, N;Lu, T;Wu, T;Wang, L;Pan, Y;Cao, X;Yuan, X;Wisniewski, T;Dang, S;Zhang, W;
| DOI: 10.1016/j.isci.2021.102672
Members of the ADAMTS family have been implicated in various vascular diseases. However, their functional roles in early embryonic vascular development are unknown. In this study, we showed that Adamts18 is highly expressed at E11.5-E14.5 in cells surrounding the embryonic aortic arch (AOAR) and the common carotid artery (CCA) during branchial arch artery development in mice. Adamts18 deficiency was found to cause abnormal development of AOAR, CCA, and the 3rd and 4th branchial arch appendages, leading to hypoplastic carotid body, thymus, and variation of middle cerebral artery. Adamts18 was shown to affect the accumulation of extracellular matrix (ECM) components, in particular fibronectin (Fn), around AOAR and CCA. As a result of increased Fn accumulation, the Notch3 signaling pathway was activated to promote the differentiation of cranial neural crest cells (CNCCs) to vascular smooth muscle cells. These data indicate that Adamts18-mediated ECM homeostasis is crucial for the differentiation of CNCCs.
Development (Cambridge, England)
Negretti, NM;Plosa, EJ;Benjamin, JT;Schuler, BA;Habermann, AC;Jetter, CS;Gulleman, P;Bunn, C;Hackett, AN;Ransom, M;Taylor, CJ;Nichols, D;Matlock, BK;Guttentag, SH;Blackwell, TS;Banovich, NE;Kropski, JA;Sucre, JMS;
PMID: 34927678 | DOI: 10.1242/dev.199512
Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.
Arutyunyan, A;Roberts, K;Troulé, K;Wong, FCK;Sheridan, MA;Kats, I;Garcia-Alonso, L;Velten, B;Hoo, R;Ruiz-Morales, ER;Sancho-Serra, C;Shilts, J;Handfield, LF;Marconato, L;Tuck, E;Gardner, L;Mazzeo, CI;Li, Q;Kelava, I;Wright, GJ;Prigmore, E;Teichmann, SA;Bayraktar, OA;Moffett, A;Stegle, O;Turco, MY;Vento-Tormo, R;
PMID: 36991123 | DOI: 10.1038/s41586-023-05869-0
The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.