Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (30)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (113) Apply SARS-CoV-2 filter
  • (-) Remove V-nCoV2019-S filter V-nCoV2019-S (30)
  • SARS-CoV-2  (13) Apply SARS-CoV-2  filter
  • Ace2 (10) Apply Ace2 filter
  • TBD (8) Apply TBD filter
  • V-nCoV2019-orf1ab-sense (5) Apply V-nCoV2019-orf1ab-sense filter
  • SARS-CoV-2 S (5) Apply SARS-CoV-2 S filter
  • CD68 (4) Apply CD68 filter
  • TMPRSS2 (4) Apply TMPRSS2 filter
  • V-nCoV2019-S-sense (4) Apply V-nCoV2019-S-sense filter
  • SARS-CoV-2 spike (4) Apply SARS-CoV-2 spike filter
  • Il-6 (3) Apply Il-6 filter
  • V-nCoV-2019-S (3) Apply V-nCoV-2019-S filter
  • Rbfox3 (2) Apply Rbfox3 filter
  • IL1B (2) Apply IL1B filter
  • IL6 (2) Apply IL6 filter
  • Ifnb1 (2) Apply Ifnb1 filter
  • Sftpc (2) Apply Sftpc filter
  • nCoV2019-S (2) Apply nCoV2019-S filter
  • nCoV2019-S-sense (2) Apply nCoV2019-S-sense filter
  • hACE2 (2) Apply hACE2 filter
  • Cxc19 (2) Apply Cxc19 filter
  • SARS‐CoV‐2 (2) Apply SARS‐CoV‐2 filter
  • SARS- CoV-2 (2) Apply SARS- CoV-2 filter
  • Axin2 (1) Apply Axin2 filter
  • CCL5 (1) Apply CCL5 filter
  • C1qa (1) Apply C1qa filter
  • CFB (1) Apply CFB filter
  • Wnt5a (1) Apply Wnt5a filter
  • KRT18 (1) Apply KRT18 filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL10 (1) Apply CXCL10 filter
  • ADCY3 (1) Apply ADCY3 filter
  • Tnf (1) Apply Tnf filter
  • EPCAM (1) Apply EPCAM filter
  • FLT1 (1) Apply FLT1 filter
  • GFAP (1) Apply GFAP filter
  • Omp (1) Apply Omp filter
  • Casp1 (1) Apply Casp1 filter
  • Mpo (1) Apply Mpo filter
  • KIT (1) Apply KIT filter
  • LCN2 (1) Apply LCN2 filter
  • PECAM1 (1) Apply PECAM1 filter
  • MCAM (1) Apply MCAM filter
  • PDGFRA (1) Apply PDGFRA filter
  • PPIB (1) Apply PPIB filter
  • 16SrRNA (1) Apply 16SrRNA filter
  • Cd163 (1) Apply Cd163 filter
  • VWF (1) Apply VWF filter
  • WNT2 (1) Apply WNT2 filter

Product

  • RNAscope 2.5 HD Red assay (7) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (7) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (4) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Multiplex Fluorescent Assay (4) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (3) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter

Research area

  • (-) Remove Covid filter Covid (30)
  • Infectious (23) Apply Infectious filter
  • Inflammation (7) Apply Inflammation filter
  • Fibrosis (1) Apply Fibrosis filter
  • Reproduction (1) Apply Reproduction filter

Category

  • Publications (30) Apply Publications filter
SARS-COV2 placentitis and pregnancy outcome: A multicentre experience during the Alpha and early Delta waves of coronavirus pandemic in England

EClinicalMedicine

2022 May 01

Stenton, S;McPartland, J;Shukla, R;Turner, K;Marton, T;Hargitai, B;Bamber, A;Pryce, J;Peres, CL;Burguess, N;Wagner, B;Ciolka, B;Simmons, W;Hurrell, D;Sekar, T;Moldovan, C;Trayers, C;Bryant, V;Palm, L;Cohen, MC;
PMID: 35465646 | DOI: 10.1016/j.eclinm.2022.101389

Pregnant women with SARS-CoV-2 infection experience higher rates of stillbirth and preterm birth. A unique pattern of chronic histiocytic intervillositis (CHI) and/or massive perivillous fibrin deposition (MPFD) has emerged, coined as SARS-CoV-2 placentitis.The aim of this study was to describe a cohort of placentas diagnosed with SARS-CoV-2 placentitis during October 2020-March 2021. Cases with a histological diagnosis of SARS-CoV-2 placentitis and confirmatory immunohistochemistry were reported. Maternal demographic data, pregnancy outcomes and placental findings were collected.59 mothers delivered 61 infants with SARS-CoV-2 placentitis. The gestational age ranged from 19 to 41 weeks with most cases (78.6%) being third trimester. 30 infants (49.1%) were stillborn or late miscarriages. Obese mothers had higher rates of pregnancy loss when compared with those with a BMI <30 [67% (10/15) versus 41% (14/34)]. 47/59 (79.7%) mothers had a positive SARS-CoV-2 PCR test either at the time of labour or in the months before, of which 12 (25.5%) were reported to be asymptomatic. Ten reported only CHI, two cases showed MPFD only and in 48 placentas both CHI and MPFD was described.SARS-CoV2 placentitis is a distinct entity associated with increased risk of pregnancy loss, particularly in the third trimester. Women can be completely asymptomatic and still experience severe placentitis. Unlike 'classical' MPFD, placentas with SARS-CoV-2 are generally normal in size with adequate fetoplacental weight ratios. Further work should establish the significance of the timing of maternal SARS-CoV-2 infection and placentitis, the significance of SARS-CoV2 variants, and rates of vertical transmission associated with this pattern of placental inflammation.There was not funding associated with this study.
Liver histopathology in COVID-19 patients: A mono-Institutional series of liver biopsies and autopsy specimens

Pathology, research and practice

2021 Apr 19

Fassan, M;Mescoli, C;Sbaraglia, M;Guzzardo, V;Russo, FP;Fabris, R;Trevenzoli, M;Pelizzaro, F;Cattelan, AM;Basso, C;Navalesi, P;Farinati, F;Vettor, R;Dei Tos, AP;
PMID: 33932720 | DOI: 10.1016/j.prp.2021.153451

Few studies have focused on COVID-19 patients' hepatic histopathological features. Many of the described morphological landscapes are non-specific and possibly due to other comorbidities or to Sars-CoV-2-related therapies. We describe the hepatic histopathological findings of 3 liver biopsies obtained from living COVID-19 patients in which active SARS-CoV-2 infection was molecularly confirmed and biopsied because of significant alterations of liver function tests and 25 livers analyzed during COVID-19-related autopsies. Main histopathological findings were (i) the absence of significant biliary tree or vascular damages, (ii) mild/absent lymphocytic hepatitis; (iii) activation of (pigmented) Kupffer cells, (iv) hepatocellular regenerative changes, (v) the presence of steatosis, (vi) sinusoidal ectasia, micro-thrombosis and acinar atrophy in autopsy specimens No viral particle actively infecting the hepatic or endothelial cells was detected at in situ hybridization. The morphological features observed within the hepatic parenchyma are not specific and should be considered as the result of an indirect insult resulting from the viral infection or the adopted therapeutic protocols.
Molecular Pathology Analysis of SARS-CoV-2 in Syncytiotrophoblast and Hofbauer Cells in Placenta from a Pregnant Woman and Fetus with COVID-19

Pathogens (Basel, Switzerland)

2021 Apr 15

Morotti, D;Cadamuro, M;Rigoli, E;Sonzogni, A;Gianatti, A;Parolin, C;Patanè, L;Schwartz, DA;
PMID: 33920814 | DOI: 10.3390/pathogens10040479

A small number of neonates delivered to women with SARS-CoV-2 infection have been found to become infected through intrauterine transplacental transmission. These cases are associated with a group of unusual placental pathology abnormalities that include chronic histiocytic intervillositis, syncytiotrophoblast necrosis, and positivity of the syncytiotrophoblast for SARS-CoV-2 antigen or RNA. Hofbauer cells constitute a heterogeneous group of immunologically active macrophages that have been involved in transplacental infections that include such viral agents as Zika virus and human immunodeficiency virus. The role of Hofbauer cells in placental infection with SARS-CoV-2 and maternal-fetal transmission is unknown. This study uses molecular pathology techniques to evaluate the placenta from a neonate infected with SARS-CoV-2 via the transplacental route to determine whether Hofbauer cells have evidence of infection. We found that the placenta had chronic histiocytic intervillositis and syncytiotrophoblast necrosis, with the syncytiotrophoblast demonstrating intense positive staining for SARS-CoV-2. Immunohistochemistry using the macrophage marker CD163, SARS-CoV-2 nucleocapsid protein, and double staining for SARS-CoV-2 with RNAscope and anti-CD163 antibody, revealed that no demonstrable virus could be identified within Hofbauer cells, despite these cells closely approaching the basement membrane zone of the infected trophoblast. Unlike some other viruses, there was no evidence from this transmitting placenta for infection of Hofbauer cells with SARS-CoV-2.
Severe COVID-19 infection is associated with aberrant cytokine production by infected lung epithelial cells rather than by systemic immune dysfunction

Research square

2021 Nov 24

Gajewski, T;Rouhani, S;Trujillo, J;Pyzer, A;Yu, J;Fessler, J;Cabanov, A;Higgs, E;Cron, K;Zha, Y;Lu, Y;Bloodworth, J;Abasiyanik, M;Okrah, S;Flood, B;Hatogai, K;Leung, M;Pezeshk, A;Kozloff, L;Reschke, R;Strohbehn, G;Chervin, CS;Kumar, M;Schrantz, S;Madariaga, ML;Beavis, K;Yeo, KT;Sweis, R;Segal, J;Tay, S;Izumchenko, E;Mueller, J;Chen, L;
PMID: 34845442 | DOI: 10.21203/rs.3.rs-1083825/v1

The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
SARS-CoV-2 Placental Infection in an Unvaccinated Mother Resulting in Fetal Demise

Cureus

2021 Dec 30

Bewley, D;Lee, J;Popescu, O;Oviedo, A;
| DOI: 10.7759/cureus.20833

* Back * Academic Departments * Alabama College of Osteopathic ... [/channels/acom] * Annals of Simulation [/channels/simulation-archives] * Aurora Breast Health Proceedings [/channels/aurora] * Baylor Scott & White Medical Ce ... [/channels/bsw-neuro] * California Institute of Behavio ... [/channels/cibnp] * Contemporary Reviews in Neurolo ... [/channels/crnn] * Dalhousie Emergency Medicine [/channels/dalhousie-em] * FLAGSHIP: Medical Scholarly Pro ... [/channels/flagship] * Houston Methodist Neurosurgery [/channels/methodist-neuro] * Liberty Medicine Research Channel [/channels/lucom] * Marcus Neuroscience Institute [/channels/marcus-neuro] * Medicine-Pediatrics Academic Ch ... [/channels/med-peds] * Military Medical Simulation [/channels/military-medical-sim] * Modern Medical Educator [/channels/mme] * NB Social Pediatrics Research [/channels/nbspr] * NEMA Research Group [/channels/nema] * Paolo Procacci Foundation [/channels/ppf] * Penn State Neurosurgery [/channels/psuneuro] * Research Update Organization [/channels/researchupdate] * Sinai Chicago Research [/channels/scr] * Stanford Neurosurgery [/channels/su-neurosurgery] * The Florida Medical Student Res ... [/channels/fmsr] * UCSF Neurological Surgery [/channels/ucsf-neurosurgery] * UCSF Surgical Neuroanatomy Coll ... [/channels/sbcvl] * University of Florida-Jacksonvi ... [/channels/jax-neuro] * University of Louisville Neuros ... [/channels/ulneuro] * University of Munich Neurology [/channels/munich-neuro]
Decreased Fetal Movements: A Sign of Placental SARS-CoV-2 Infection with Perinatal Brain Injury

Viruses

2021 Dec 15

Favre, G;Mazzetti, S;Gengler, C;Bertelli, C;Schneider, J;Laubscher, B;Capoccia, R;Pakniyat, F;Ben Jazia, I;Eggel-Hort, B;de Leval, L;Pomar, L;Greub, G;Baud, D;Giannoni, E;
PMID: 34960786 | DOI: 10.3390/v13122517

Neonatal COVID-19 is rare and mainly results from postnatal transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, can infect the placenta and compromise its function. We present two cases of decreased fetal movements and abnormal fetal heart rhythm 5 days after mild maternal COVID-19, requiring emergency caesarean section at 29 + 3 and 32 + 1 weeks of gestation, and leading to brain injury. Placental examination revealed extensive and multifocal chronic intervillositis, with intense cytoplasmic positivity for SARS-CoV-2 spike antibody and SARS-CoV-2 detection by RT-qPCR. Vertical transmission was confirmed in one case, and both neonates developed extensive cystic peri-ventricular leukomalacia.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?