Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (6)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Cdr1 (1) Apply Cdr1 filter
  • TBD (1) Apply TBD filter
  • hsa_circ_0048091 (1) Apply hsa_circ_0048091 filter
  • hsa_circ_0092339 (1) Apply hsa_circ_0092339 filter
  • circSPG21 (1) Apply circSPG21 filter
  • miR-1197 (1) Apply miR-1197 filter
  • circ-Hdgfrp3 (1) Apply circ-Hdgfrp3 filter
  • circ-ZNF609 (1) Apply circ-ZNF609 filter

Product

  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • Basescope (1) Apply Basescope filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • (-) Remove circRNA filter circRNA (6)
  • Cancer (2) Apply Cancer filter
  • Development (1) Apply Development filter
  • Inflammation (1) Apply Inflammation filter
  • Neuroscience (1) Apply Neuroscience filter
  • noncoding RNA (1) Apply noncoding RNA filter
  • Psoriasis (1) Apply Psoriasis filter
  • Skin (1) Apply Skin filter

Category

  • Publications (6) Apply Publications filter
Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS

iScience

2021 Nov 01

D’Ambra, E;Santini, T;Vitiello, E;D’Uva, S;Silenzi, V;Morlando, M;Bozzoni, I;
| DOI: 10.1016/j.isci.2021.103504

CircRNAs belong to a family of RNA molecules which are conserved in evolution, have tissue-specific expression, and are abundant in neuronal cells. Here, we define several features of circ-Hdgfrp3 and describe interesting alterations occurring in motor neurons (MNs) carrying ALS-associated FUS mutations. Through a highly sensitive in situ approach we describe that circ-Hdgfrp3 traffics along neurites, while upon oxidative stress it is retained in the perinuclear region. While in wild-type stressed MNs, circ-Hdgfrp3 localizes in stress granules (SGs), in MNs carrying mutant FUS, a higher proportion of circ-Hdgfrp3 was trapped into cytoplasmic aggregates. Upon stress removal, circ-Hdgfrp3 was easily freed from SGs whereas it was less efficiently released from FUS-aggregates. We found that the human circ-Hdgfrp3 counterpart was also similarly associated to mutant FUS-aggregates in stressed neuronal cells. Overall, the alteration of circ-Hdgfrp3 trafficking adds a further layer of complexity to the role of FUS-aggregates in ALS disease.
Global circRNA expression changes predate clinical and histological improvements of psoriasis patients upon secukinumab treatment

PloS one

2022 Sep 29

Seeler, S;Moldovan, LI;Bertelsen, T;Hager, H;Iversen, L;Johansen, C;Kjems, J;Sommer Kristensen, L;
PMID: 36174034 | DOI: 10.1371/journal.pone.0275219

Psoriasis is a common chronic inflammatory skin disease accompanied by heterogenous clinical and histological features, including a characteristic keratinocyte hyperproliferation and dermal immunogenic profile. In addition, psoriasis is associated with widespread transcriptomic alterations including changes in microRNA (miRNA) and circular RNA (circRNA) abundance, which constitute non-coding RNA (ncRNA) classes with specific regulatory capacities in diverse physiological and pathological processes. However, the knowledge about the expression dynamics of ncRNA during psoriasis treatment is sparse. To elucidate the dynamics of miRNA and circRNA abundance during secukinumab (anti-IL-17A) treatment, we studied their expression patterns in skin biopsies from 14 patients with severe plaque-type psoriasis before and during an 84-day secukinumab therapy at day 0, 4, 14, 42, and 84 using NanoString nCounter technology. We found a comprehensive downregulation of the majority of investigated circRNAs and specific alterations in the miRNA profile, including an upregulation of miR-203a-3p, miR-93-5p, and miR-378i in lesional compared to non-lesional skin before treatment. During treatment, the circRNAs progressively returned to the expression levels observed in non-lesional skin and already four days after treatment initiation most circRNAs were significantly upregulated. In comparison, for miRNAs, the normalization to baseline during treatment was delayed and limited to a subset of miRNAs. Moreover, we observed a strong correlation between multiple circRNAs, including ciRS-7 and circPTPRA, and the psoriasis area and severity index (PASI). Similar pronounced correlations could, however, not be found for miRNAs. Finally, we did not observe any significant changes in circRNA expression in peripheral blood mononuclear cells during treatment. In conclusion, we uncovered a rapid shift in global circRNA abundance upon anti-IL-17A treatment, which predated clinical and histological improvements, and a strong correlation with PASI, indicating a biomarker potential of individual circRNAs.
hsa_circ_0092339 acts as a molecular sponge in castration-resistant prostate cancer via the hsa-mir-940/C-MYC axis

Epigenomics

2022 Jul 19

Li, H;Yang, Y;Yu, J;Zhang, B;Chen, X;Zhu, S;Niu, Y;Shang, Z;
PMID: 35852112 | DOI: 10.2217/epi-2022-0111

Aims: We aimed to determine whether intronic circRNA acts as a molecular sponge in castration-resistant prostate cancer (CRPC). Materials & methods: A gene chip technique was used to conduct sequencing. A qPCR experiment was performed to verify the result. Radioimmunoprecipitation, RNA pull-down and dual-luciferase reporter assays were performed to particularly expound its function. Verification of downstream effects was carried out through qPCR and western blot, and a xenograft assay was performed in vivo for verification. Results: Intronic circRNA hsa_circ_0092339 in the nucleus was highly expressed in CRPC cell lines. hsa_circ_0092339 did not regulate the expression of its parental gene. hsa_circ_0092339 functions like a molecular sponge, preventing degradation of C-MYC mRNA by absorbing hsa-mir-940. Conclusion: hsa_circ_0092339 plays a critical role in CRPC through targeting C-MYC indirectly by absorbing hsa-mir-940.
Methods to study circRNA-protein interactions

Methods (San Diego, Calif.)

2021 Apr 22

Ulshöfer, CJ;Pfafenrot, C;Bindereif, A;Schneider, T;
PMID: 33894379 | DOI: 10.1016/j.ymeth.2021.04.014

Circular RNAs (circRNAs) have been studied extensively in the last few years, uncovering functional roles in a diverse range of cell types and organisms. As shown for a few cases, these functions may be mediated by trans-acting factors, in particular RNA-binding proteins (RBPs). However, the specific interaction partners for most circRNAs remain unknown. This is mainly due to technical difficulties in their identification and in differentiating between interactors of circRNAs and their linear counterparts. Here we review the currently used methodology to systematically study circRNA-protein complexes (circRNPs), focusing either on a specific RNA or protein, both on the gene-specific or global level, and discuss advantages and challenges of the available approaches.
circSPG21 protects against intervertebral disc disease by targeting miR-1197/ATP1B3

Experimental & molecular medicine

2021 Oct 01

Huang, Y;Zhang, Z;Wang, J;Shen, S;Yao, T;Xu, Y;Chen, Z;Fang, B;Ma, J;
PMID: 34611269 | DOI: 10.1038/s12276-021-00674-z

The abnormal expression of circular RNAs (circRNAs) is associated with numerous human diseases. This study investigated the mechanism by which circRNA acts as competitive endogenous RNA in the regulation of degenerative intervertebral disc disease (IVDD). Decreased expression of circSPG21 was detected in degenerated nucleus pulposus cells (NPCs), the function of circSPG21 in NPCs was explored and verified, and the downstream target of circSPG21 was investigated. The interaction between circSPG21 and miR-1197 and its target gene (ATP1B3) was studied by online database prediction and molecular biological verification. Finally, the circSPG21/miR-1197/ATP1B3 axis was verified in the mouse tail-looping model. The expression of circSPG21 in the nucleus pulposus in IVDD was directly related to an imbalance of anabolic and catabolic factors, which affected cell senescence. circSPG21 was found to play a role in human NPCs by acting as a sponge of miR-1197 and thereby affecting ATP1B3. The regulation of circSPG21 provides a potentially effective therapeutic strategy for IVDD.
Fuzheng Kang-Ai inhibits NSCLC cell proliferation via regulating hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway

Phytomedicine : international journal of phytotherapy and phytopharmacology

2023 Jun 01

Tang, Q;Wang, X;Zhou, Q;Li, Q;Yang, X;Xu, M;Wang, R;Chen, J;Wu, W;Wang, S;
PMID: 37062135 | DOI: 10.1016/j.phymed.2023.154819

Current treatments for lung cancer have their own deficiencies, such as severe adverse effect. Therefore, more safe and effective drugs are needed.Fuzheng Kang-Ai (FZKA for short) has been applied as an adjuvant treatment in advanced Non-Small Cell Lung Cancer (NSCLC) patients for decades in China, showing a definitive effect with minimal toxicities. However, the underlying mechanism is yet to be identified.Both in vitro and in vivo experiments were performed in this study to identify the exact mechanism by which FZKA inhibits NSCLC cell proliferation.MTT and CCK-8 assays were used to detect cell viability. Xenograft model was performed for in vivo experiments. CircRNA and miRNA sequencing were used to find the differentially expressed circRNAs and miRNAs, respectively. qRT-PCR was performed to check the expression levels of circRNA, miRNA and mRNA. BaseScope was carried out to observe the expression of circRNA in situ. Actinomycin D and RNase R experiments were done to show the stability of circRNA. Nuclear-cytoplasmic fractionation and FISH were used to identify the localization of circRNA and miRNA. Pull-down, RIP, and luciferase activity assays were performed to show the biding ability of circRNA, miRNA and target proteins. Flow cytometry was done to observe cell apoptosis. Western blot and IHC were done to detect the protein expression. TCGA database was used to analyze the survival rate.FZKA inhibits NSCLC cell proliferation both in vitro and in vivo. Hsa_circ_0048091 and hsa-miR-378g were the most differentially expressed circRNA and miRNA, respectively, after FZKA treatment. Silencing hsa_circ_0048091 and overexpressing hsa-miR-378g promoted cell proliferation and reversed the inhibition effect of FZKA on NSCLC, respectively. Hsa-miR-378g was sponged by hsa_circ_0048091, and the overexpression of miR-378g reversed the inhibition effect of hsa_ circ_0048091 on NSCLC. ARRDC3, as a target of hsa-miR-378g, was increased by FZKA treatment. Silencing ARRDC3 reversed both the inhibition effect of FZKA and miR-378g inhibitor on NSCLC.This study, for the first time, has established the function of hsa_circ_0048091, hsa- miR-378g, and ARRDC3 in lung cancer. It also shows that FZKA inhibits NSCLC cell proliferation through hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway, uncovering a novel mechanism by which FZKA controls human NSCLC cell growth.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?