Journal of endocrinological investigation
Besharat, ZM;Trocchianesi, S;Verrienti, A;Ciampi, R;Cantara, S;Romei, C;Sabato, C;Noviello, TMR;Po, A;Citarella, A;Caruso, FP;Panariello, I;Gianno, F;Carpino, G;Gaudio, E;Chiacchiarini, M;Masuelli, L;Sponziello, M;Pecce, V;Ramone, T;Maino, F;Dotta, F;Ceccarelli, M;Pezzullo, L;Durante, C;Castagna, MG;Elisei, R;Ferretti, E;
PMID: 37286863 | DOI: 10.1007/s40618-023-02115-2
The determination of tumour biomarkers is paramount to advancing personalized medicine, more so in rare tumours like medullary thyroid carcinoma (MTC), whose diagnosis is still challenging. The aim of this study was to identify non-invasive circulating biomarkers in MTC. To achieve this goal, paired MTC tissue and plasma extracellular vesicle samples were collected from multiple centres and microRNA (miRNA) expression levels were evaluated.The samples from a discovery cohort of 23 MTC patients were analysed using miRNA arrays. Lasso logistic regression analysis resulted in the identification of a set of circulating miRNAs as diagnostic biomarkers. Among them, miR-26b-5p and miR-451a, were highly expressed and their expression decreased during follow-up in disease-free patients in the discovery cohort. Circulating miR-26b-5p and miR-451a were validated using droplet digital PCR in a second independent cohort of 12 MTC patients.This study allowed the identification and validation of a signature of two circulating miRNAs, miR-26b-5p and miR-451a, in two independent cohorts reporting a significant diagnostic performance for MTC. The results of this study offer advancements in molecular diagnosis of MTC proposing a novel non-invasive tool to use in precision medicine.
The American journal of pathology
Kobayashi, Y;Yokoi, A;Hashimura, M;Oguri, Y;Konno, R;Matsumoto, T;Tochimoto, M;Nakagawa, M;Ishibashi, Y;Ito, T;Ohhigata, K;Harada, Y;Fukagawa, N;Kodera, Y;Saegusa, M;
PMID: 37169340 | DOI: 10.1016/j.ajpath.2023.04.011
Epithelial-mesenchymal transition is a hallmark of uterine carcinosarcoma (UCS). Here, we used shotgun proteomics analysis to identify biomarkers associated with blebbistatin-mediated epithelial-mesenchymal transition in UCS, and found up-regulation of nucleobindin-2 (NUCB2) in endometrial carcinoma (Em Ca) cells. Expression of N-cadherin, Snail, Slug, and ZEB1 was reduced in NUCB2 knockout Em Ca cells, whereas ZEB1, Twist1, and vimentin were up-regulated in NUCB2-overexpressing Em Ca cells. NUCB2 knockout reduced cell proliferation and migration, whereas NUCB2 overexpression had the opposite effect. Treatment of Em Ca cells with transforming growth factor (TGF)-β1 dramatically altered morphology toward a fibroblastic appearance; concomitantly, expression of NUCB2 and ZEB1 increased. The NUCB2 promoter was also activated by transfection of Smad2. In UCS tissues, NUCB2 expression was significantly higher in sarcomatous compared with carcinomatous components; this was consistent with increased TGF-β1 mRNA expression in stromal and sarcomatous components compared with carcinomatous components. In addition, NUCB2 score correlated positively with ZEB1 and vimentin scores, whereas ZEB1 score correlated positively with Slug and vimentin scores and inversely with the E-cadherin score. We therefore suggest that TGF-β-dependent up-regulation of NUCB2 and ZEB1 contributes to the phenotypic characteristics of sarcomatous components in UCS.
Li, HB;Wang, D;Zhang, Y;Shen, D;Che, YQ;
PMID: 36660244 | DOI: 10.1155/2023/1388041
Chemoresistance is a key obstacle in the clinical treatment and management of activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL), which leads to the poor prognosis of patients. Exploring novel biomarkers to early warn drug resistance and ameliorate the patients' outcome in ABC-DLBCL is urgent and crucial. Previously, we found that insulin-like growth factor-binding protein 3 (IGFBP3) was remarkably associated with immunochemotherapy treatment response through microarray screening. Based on a retrospective cohort (n = 160) and a GEO cohort (n = 292), here we determined the positive expression rate of IGFBP3 and analyzed the role of IGFBP3 in treatment response and prognostics in ABC-DLBCL. The results demonstrated that the complete response (CR) rate of R-CHOP treatment was higher in ABC-DLBCL with IGFBP3 positive expression than those with IGFBP3 negative expression (42.0% vs 26.4%), and IGFBP3 positive expression in ABC-DLBCL was significantly correlated with enhanced therapeutic response (P = 0.037). High level of IGFBP3 was negatively correlated with tumorigenesis and development and predicted favorable survival time in ABC-DLBCL. In conclusion, IGFBP3 may be utilized as a promising biomarker for prognosis evaluation and a potential therapy target in ABC-DLBCL patients.
Pathology, research and practice
Ehara, T;Uehara, T;Yoshizawa, T;Kinugawa, Y;Nakajima, T;Kobayashi, S;Asaka, S;Iwaya, M;Nagaya, T;Kitazawa, M;Ota, H;Soejima, Y;
PMID: 36701848 | DOI: 10.1016/j.prp.2023.154312
Leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) promotes carcinogenesis and progression in some cancer types. However, there are few reports of LGR6 expression in esophageal squamous cell carcinoma (ESCC). LGR6 expression and clinicopathological features in ESCC were investigated by RNAscope, a highly sensitive RNA in situ hybridization method.Appropriate tumors were selected from 41 cases of ESCC from which tissue microarrays were generated, and LGR6 expression was identified by RNAscope.Thirty-seven patients had LGR6 expression. High LGR6 expression was observed in 17 cases and low LGR6 expression in 24 cases. LGR6 expression was significantly higher in high histological grade ESCC than in low histological grade ESCC (P = 0.0023). ESCC patients who received neoadjuvant chemotherapy had significantly higher LGR6 expression than those without neoadjuvant chemotherapy (P = 0.0109). Furthermore, high LGR6 expression showed a poorer prognosis than low LGR6 expression (log-rank test, P = 0.0365).LGR6 may be a prognostic factor and a potential new therapeutic target in ESCC.
Nikitin, P;Musina, G;Pekov, S;Kuzin, A;Popov, I;Belyaev, A;Kobyakov, G;Usachev, D;Nikolaev, V;Mikhailov, V;
| DOI: 10.3390/cancers15010145
Diffuse gliomas continue to be an important problem in neuro-oncology. To solve it, studies have considered the issues of molecular pathogenesis from the intratumoral heterogeneity point. Here, we carried out a comparative dynamic analysis of the different cell populations’ content in diffuse gliomas of different molecular profiles and grades, considering the cell populations’ functional properties and the relationship with patient survival, using flow cytometry, immunofluorescence, multiparametric fluorescent in situ hybridization, polymerase chain reaction, and cultural methods. It was shown that an increase in the IDH-mutant astrocytomas and oligodendrogliomas malignancy is accompanied by an increase in stem cells’ proportion and mesenchymal cell populations’ appearance arising from oligodendrocyte-progenitor-like cells with cell plasticity and cells’ hypoxia response programs’ activation. In glioblastomas, malignancy increase is accompanied by an increase in both stem and definitive cells with mesenchymal differentiation, while proneuronal glioma stem cells are the most likely the source of mesenchymal glioma stem cells, which, in hypoxic conditions, further give rise to mesenchymal-like cells. Clinical confirmation was a mesenchymal-like cell and mesenchymal glioma stem cell number, and the hypoxic and plastic molecular programs’ activation degree had a significant effect on relapse-free and overall survival. In general, we built a multi-vector model of diffuse gliomas’ pathogenetic tracing up to the practical plane.
Yang, Y;Ahn, J;Edwards, NJ;Benicky, J;Rozeboom, AM;Davidson, B;Karamboulas, C;Nixon, KCJ;Ailles, L;Goldman, R;
PMID: 36428645 | DOI: 10.3390/cancers14225553
Pan-cancer analysis of TCGA and CPTAC (proteomics) data shows that SULF1 and SULF2 are oncogenic in a number of human malignancies and associated with poor survival outcomes. Our studies document a consistent upregulation of SULF1 and SULF2 in HNSC which is associated with poor survival outcomes. These heparan sulfate editing enzymes were considered largely functional redundant but single-cell RNAseq (scRNAseq) shows that SULF1 is secreted by cancer-associated fibroblasts in contrast to the SULF2 derived from tumor cells. Our RNAScope and patient-derived xenograft (PDX) analysis of the HNSC tissues fully confirm the stromal source of SULF1 and explain the uniform impact of this enzyme on the biology of multiple malignancies. In summary, SULF2 expression increases in multiple malignancies but less consistently than SULF1, which uniformly increases in the tumor tissues and negatively impacts survival in several types of cancer even though its expression in cancer cells is low. This paradigm is common to multiple malignancies and suggests a potential for diagnostic and therapeutic targeting of the heparan sulfatases in cancer diseases.
International journal of surgical pathology
Mannan, R;Wang, X;Bawa, PS;Zhang, Y;Skala, SL;Chinnaiyan, AK;Dagar, A;Wang, L;Zelenka-Wang, SB;McMurry, LM;Daniel, N;Cao, X;Sangoi, AR;Gupta, S;Vaishampayan, UN;Hafez, KS;Morgan, TM;Spratt, DE;Tretiakova, MS;Argani, P;Chinnaiyan, AM;Dhanasekaran, SM;Mehra, R;
PMID: 36250542 | DOI: 10.1177/10668969221125793
Introduction: Chromophobe renal cell carcinoma (chromophobe RCC) is the third major subcategory of renal tumors after clear cell RCC and papillary RCC, accounting for approximately 5% of all RCC subtypes. Other oncocytic neoplasms seen commonly in surgical pathology practice include the eosinophilic variant of chromophobe RCC, renal oncocytoma, and low-grade oncocytic unclassified RCC. Methods: In our recent next-generation sequencing based study, we nominated a lineage-specific novel biomarker LINC01187 (long intergenic non-protein coding RNA 1187) which was found to be enriched in chromophobe RCC. Like KIT (cluster of differentiation 117; CD117), a clinically utilized chromophobe RCC related biomarker, LINC01187 is expressed in intercalated cells of the nephron. In this follow-up study, we performed KIT immunohistochemistry and LINC01187 RNA in situ hybridization (RNA-ISH) on a cohort of chromophobe RCC and other renal neoplasms, characterized the expression patterns, and quantified the expression signals of the two biomarkers in both primary and metastatic settings. Results: LINC01187, in comparison to KIT, exhibits stronger and more uniform expression within tumors while maintaining temporal and spatial consistency. LINC01187 also is devoid of intra-tumoral heterogeneous expression pattern, a phenomenon commonly noted with KIT. Conclusions: LINC01187 expression can augment the currently utilized KIT assay and help facilitate easy microscopic analyses in routine surgical pathology practice.
Lan, L;Evan, T;Li, H;Hussain, A;Ruiz, EJ;Zaw Thin, M;Ferreira, RMM;Ps, H;Riising, EM;Zen, Y;Almagro, J;Ng, KW;Soro-Barrio, P;Nelson, J;Koifman, G;Carvalho, J;Nye, EL;He, Y;Zhang, C;Sadanandam, A;Behrens, A;
PMID: 35768509 | DOI: 10.1038/s41586-022-04888-7
Pancreatic ductal adenocarcinoma (PDAC) shows pronounced epithelial and mesenchymal cancer cell populations1-4. Cellular heterogeneity in PDAC is an important feature in disease subtype specification3-5, but how distinct PDAC subpopulations interact, and the molecular mechanisms that underlie PDAC cell fate decisions, are incompletely understood. Here we identify the BMP inhibitor GREM16,7 as a key regulator of cellular heterogeneity in pancreatic cancer in human and mouse. Grem1 inactivation in established PDAC in mice resulted in a direct conversion of epithelial into mesenchymal PDAC cells within days, suggesting that persistent GREM1 activity is required to maintain the epithelial PDAC subpopulations. By contrast, Grem1 overexpression caused an almost complete 'epithelialization' of highly mesenchymal PDAC, indicating that high GREM1 activity is sufficient to revert the mesenchymal fate of PDAC cells. Mechanistically, Grem1 was highly expressed in mesenchymal PDAC cells and inhibited the expression of the epithelial-mesenchymal transition transcription factors Snai1 (also known as Snail) and Snai2 (also known as Slug) in the epithelial cell compartment, therefore restricting epithelial-mesenchymal plasticity. Thus, constant suppression of BMP activity is essential to maintain epithelial PDAC cells, indicating that the maintenance of the cellular heterogeneity of pancreatic cancer requires continuous paracrine signalling elicited by a single soluble factor.
International journal of molecular sciences
Peterson, C;Parikh, RN;Ahmad, MT;Campbell, AA;Daoud, Y;Mahoney, N;Siadati, S;Eberhart, CG;
PMID: 35806252 | DOI: 10.3390/ijms23137249
In-situ hybridization provides a convenient and reliable method to detect human papillomavirus (HPV) infection in formalin-fixed paraffin-embedded tissue. Cases of conjunctival papillomas, conjunctival intraepithelial neoplasia (CIN), conjunctival carcinoma in situ (cCIS), and invasive squamous cell carcinoma (SCC), in which low-risk (LR) and/or high-risk (HR) HPV types were evaluated by RNA or DNA in-situ hybridization, were retrospectively identified. LR HPV types were frequently detected in conjunctival papillomas (25/30, 83%), including 17/18 (94%) with RNA probes, compared to 8/12 (75%) with DNA probes. None of the CIN/cCIS or SCC cases were positive for LR HPV by either method. HR HPV was detected by RNA in-situ hybridization in 1/16 (6%) of CIN/cCIS cases and 2/4 (50%) of SCC cases, while DNA in-situ hybridization failed to detect HPV infection in any of the CIN/cCIS lesions. Reactive atypia and dysplasia observed in papillomas was generally associated with the detection of LR HPV types. Collectively, our findings indicate RNA in-situ hybridization may provide a high-sensitivity approach for identifying HPV infection in squamous lesions of the conjunctiva and facilitate the distinction between reactive atypia and true dysplasia. There was no clear association between HPV infection and atopy in papillomas or dysplastic lesions.
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Vanderbilt, C;Brenn, T;Moy, AP;Harloe, G;Ariyan, C;Athanasian, E;Busam, KJ;
PMID: 35538210 | DOI: 10.1038/s41379-022-01094-8
Digital papillary adenocarcinoma (DPAC) is a rare tumor of sweat gland origin that preferentially affects the digits and has the potential to metastasize. Its tumor diagnosis can be difficult. Well-differentiated variants of DPAC can be confused with a benign sweat gland tumor, in particular nodular hidradenoma. With the recent detection of HPV42 DNA in DPAC by next-generation sequence analysis, we reasoned that this association could be used for diagnostic purposes. To this end, we performed in situ hybridization for HPV42 on 10 tumors diagnosed as DPAC as well as 30 sweat gland tumors of various histology types, including 8 acral hidradenomas. All DPAC were positive for HPV42. Positive hybridization signals for HPV42 were seen in both primary and metastatic DPACs. All other tumors and normal tissues were negative. This study confirms the association of HPV42 with the tumor cells of DPAC through in situ hybridization. The positive test result in all lesions of DPAC and lack of detection of HPV42 in any of the acral hidradenomas or other sweat gland tumors examined in this series is encouraging for the potential diagnostic utility of the assay. As documented by two scrotal tumors of DPAC, the in situ hybridization test for HPV42 can also help support the rare occurrence of this tumor at a non-acral site.
Shah, AH;Govindarajan, V;Doucet-O'Hare, TT;Rivas, S;Ampie, L;DeMarino, C;Banasavadi-Siddegowda, YK;Zhang, Y;Johnson, KR;Almsned, F;Gilbert, MR;Heiss, JD;Nath, A;
PMID: 35477752 | DOI: 10.1038/s41598-022-10914-5
Comprising approximately 8% of our genome, Human Endogenous RetroViruses (HERVs) represent a class of germline retroviral infections that are regulated through epigenetic modifications. In cancer cells, which often have epigenetic dysregulation, HERVs have been implicated as potential oncogenic drivers. However, their role in gliomas is not known. Given the link between HERV expression in cancer cell lines and the distinct epigenetic dysregulation in gliomas, we utilized a tailored bioinformatic pipeline to characterize and validate the glioma retrotranscriptome and correlate HERV expression with locus-specific epigenetic modifications. We identified robust overexpression of multiple HERVs in our cell lines, including a retroviral transcript, HML-6, at 19q13.43b in glioblastoma cells. HERV expression inversely correlated with loci-specific DNA methylation. HML-6 contains an intact open reading frame encoding a small envelope protein, ERVK3-1. Increased expression of ERVK3-1 in GBM patients is associated with a poor prognosis independent of IDH-mutational status. Our results suggest that not only is HML-6 uniquely overexpressed in highly invasive cell lines and tissue samples, but also its gene product, ERVK3-1, may be associated with reduced survival in GBM patients. These results may have implications for both the tumor biology of GBM and the role of ERVK3-1 as a potential therapeutic target.
Yao, D;Lin, S;Chen, S;Wang, Z;
PMID: 35443871 | DOI: 10.1080/21655979.2022.2060776
Circular RNAs (circRNAs) are a type of important non-coding RNAs that widely involve in the physiological and pathophysiological process. Recent research has established a link between circHIPK3 and the malignant activity of cancer cells. However, circHIPK3' role in esophageal squamous cell carcinoma (ESCC) still needs more focus. To determine the prognostic value of circHIPK3 in patients with ESCC, the expression of circHIPK3 was quantified in 32 pairs of ESCC using real-time polymerase chain reaction (RT-qPCR). Then, the correlation between circHIPK3 expression and clinical characteristics of patients was also analyzed. The function of circHIPK3 in the development of ESCC was investigated using cell biology studies and bioinformatics. The results showed that the expression of circHIPK3 was considerably higher in tumor tissues from ESCC patients than that of adjacent tissues, which was associated with a poor prognosis. Additionally, silencing of circHIPK3 expression retarded esophageal cancer cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, as well as the growth in vivo. Mechanistically, we discovered that circHIPK3 behaved like a sponge, absorbing microRNA-124 (miR-124) and promoting serine/threonine kinase 3 (AKT3) expression. Our findings indicate that circHIPK3 acts as an oncogene in ESCC and that the circHIPK3-AKT3 axis may be a therapeutic target for patients with ESCC.