Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1368)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (244) Apply RNAscope 2.0 Assay filter
  • RNAscope (177) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (134) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (90) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (88) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (80) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (52) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 VS Assay (37) Apply RNAscope 2.5 VS Assay filter
  • BASEscope Assay RED (35) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Duplex (33) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (31) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • TBD (24) Apply TBD filter
  • Basescope (19) Apply Basescope filter
  • RNAscope Multiplex Fluorescent v2 (10) Apply RNAscope Multiplex Fluorescent v2 filter
  • miRNAscope (7) Apply miRNAscope filter
  • RNAscope HiPlex v2 assay (5) Apply RNAscope HiPlex v2 assay filter
  • CTCscope (4) Apply CTCscope filter
  • RNAscope 2.5 HD duplex reagent kit (4) Apply RNAscope 2.5 HD duplex reagent kit filter
  • DNAscope HD Duplex Reagent Kit (3) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope ISH Probe High Risk HPV (3) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope 2.5 HD Reagent Kit (2) Apply RNAscope 2.5 HD Reagent Kit filter
  • BOND RNAscope Brown Detection (1) Apply BOND RNAscope Brown Detection filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • HybEZ Hybridization System (1) Apply HybEZ Hybridization System filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex12 Reagents Kit (1) Apply RNAscope HiPlex12 Reagents Kit filter

Research area

  • (-) Remove Cancer filter Cancer (1368)
  • HPV (158) Apply HPV filter
  • Infectious Disease (120) Apply Infectious Disease filter
  • lncRNA (67) Apply lncRNA filter
  • Immunotherapy (52) Apply Immunotherapy filter
  • Neuroscience (42) Apply Neuroscience filter
  • Stem Cells (40) Apply Stem Cells filter
  • Inflammation (31) Apply Inflammation filter
  • LncRNAs (16) Apply LncRNAs filter
  • Tumor microenvironment (6) Apply Tumor microenvironment filter
  • circRNAs (5) Apply circRNAs filter
  • Stem cell (5) Apply Stem cell filter
  • CGT (4) Apply CGT filter
  • Development (4) Apply Development filter
  • miRNAs (4) Apply miRNAs filter
  • therapeutics (4) Apply therapeutics filter
  • intratumoral microbiota (3) Apply intratumoral microbiota filter
  • Other: Methods (3) Apply Other: Methods filter
  • Pain (3) Apply Pain filter
  • Cell Therapy (2) Apply Cell Therapy filter
  • circRNA (2) Apply circRNA filter
  • Developmental (2) Apply Developmental filter
  • Engineered T cells (2) Apply Engineered T cells filter
  • Epstein-Barr (2) Apply Epstein-Barr filter
  • Gene Therapy (2) Apply Gene Therapy filter
  • HIV (2) Apply HIV filter
  • Immuno-Oncology (2) Apply Immuno-Oncology filter
  • Immunotherapy: NK-Cell Therapy (2) Apply Immunotherapy: NK-Cell Therapy filter
  • Liver (2) Apply Liver filter
  • Lung (2) Apply Lung filter
  • noncoding RNA (2) Apply noncoding RNA filter
  • Radiotherapy (2) Apply Radiotherapy filter
  • Antimicrobial Chemotherapy (1) Apply Antimicrobial Chemotherapy filter
  • Bone (1) Apply Bone filter
  • Canine Cancer (1) Apply Canine Cancer filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Diet (1) Apply Diet filter
  • Endocrinology (1) Apply Endocrinology filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease: Cutavirus (1) Apply Infectious Disease: Cutavirus filter
  • Infectiouse Disease: EBV (1) Apply Infectiouse Disease: EBV filter
  • IO (1) Apply IO filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Genomics (1) Apply Other: Genomics filter
  • Other: Reproductive Biology (1) Apply Other: Reproductive Biology filter
  • Single Cell Sequencing (1) Apply Single Cell Sequencing filter
  • Skin (1) Apply Skin filter
  • Tumor Microbiome (1) Apply Tumor Microbiome filter
  • Virotherapy (1) Apply Virotherapy filter

Category

  • Publications (1368) Apply Publications filter
Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma

Nature genetics

2021 Mar 25

Jansky, S;Sharma, AK;Körber, V;Quintero, A;Toprak, UH;Wecht, EM;Gartlgruber, M;Greco, A;Chomsky, E;Grünewald, TGP;Henrich, KO;Tanay, A;Herrmann, C;Höfer, T;Westermann, F;
PMID: 33767450 | DOI: 10.1038/s41588-021-00806-1

Neuroblastoma is a pediatric tumor of the developing sympathetic nervous system. However, the cellular origin of neuroblastoma has yet to be defined. Here we studied the single-cell transcriptomes of neuroblastomas and normal human developing adrenal glands at various stages of embryonic and fetal development. We defined normal differentiation trajectories from Schwann cell precursors over intermediate states to neuroblasts or chromaffin cells and showed that neuroblastomas transcriptionally resemble normal fetal adrenal neuroblasts. Importantly, neuroblastomas with varying clinical phenotypes matched different temporal states along normal neuroblast differentiation trajectories, with the degree of differentiation corresponding to clinical prognosis. Our work highlights the roles of oncogenic MYCN and loss of TFAP2B in blocking differentiation and may provide the basis for designing therapeutic interventions to overcome differentiation blocks.
Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers

Cancer Discov.

2017 Dec 01

Pearce OMT, Delaine-Smith R, Maniati E, Nichols S, Wang J, Böhm S, Rajeeve V, Ullah D, Chakravarty P, Jones RR, Montfort A, Dowe T, Gribben J, Jones JL, Kocher HM, Serody JS, Vincent BG, Connelly J, Brenton JD, Chelala C, Cutillas PR, Lockley M, Bessant C
PMID: 29196464 | DOI: 10.1158/2159-8290.CD-17-0284

We have profiled, for the first time, an evolving human metastatic microenvironment, measuring gene expression, matrisome proteomics, cytokine and chemokine levels, cellularity, ECM organization and biomechanical properties, all on the same sample. Using biopsies of high-grade serous ovarian cancer (HGSOC) metastases that ranged from minimal to extensive disease, we show how non-malignant cell densities and cytokine networks evolve with disease progression. Multivariate integration of the different components allowed us to define for the first time, gene and protein profiles that predict extent of disease and tissue stiffness, whilst also revealing the complexity and dynamic nature of matrisome remodeling during development of metastases. Although we studied a single metastatic site from one human malignancy, a pattern of expression of 22 matrisome genes distinguished patients with a shorter overall survival in ovarian and twelve other primary solid cancers, suggesting that there may be a common matrix response to human cancer.

Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development.

Cell Rep.

2018 Aug 07

Giraddi RR, Chung CY, Heinz RE, Balcioglu O, Novotny M, Trejo CL, Dravis C, Hagos BM, Mehrabad EM, Rodewald LW, Hwang JY, Fan C, Lasken R, Varley KE, Perou CM, Wahl GM, Spike BT.
PMID: 30089273 | DOI: 10.1016/j.celrep.2018.07.025

The mammary gland consists of cells with gene expression patterns reflecting their cellular origins, function, and spatiotemporal context. However, knowledge of developmental kinetics and mechanisms of lineage specification is lacking. We address this significant knowledge gap by generating a single-cell transcriptome atlas encompassing embryonic, postnatal, and adult mouse mammary development. From these data, we map the chronology of transcriptionally and epigenetically distinct cell states and distinguish fetal mammary stem cells (fMaSCs) from their precursors and progeny. fMaSCs show balanced co-expression of factors associated with discrete adult lineages and a metabolic gene signature that subsides during maturation but reemerges in some human breast cancers and metastases. These data provide a useful resource for illuminating mammary cell heterogeneity, the kinetics of differentiation, and developmental correlates of tumorigenesis.

Simultaneous B and T cell acute lymphoblastic leukemias in zebrafish driven by transgenic MYC: implications for oncogenesis and lymphopoiesis

Leukemia.

2018 Aug 15

Borga C, Park G, Foster C, Burroughs-Garcia J, Marchesin M, Shah R, Hasan A, Ahmed ST, Bresolin S, Batchelor L, Scordino T, Miles RR, te Kronnie G, Regens JL, Frazer JK.
PMID: 30111845 | DOI: 10.1038/s41375-018-0226-6

Precursor-B cell acute lymphoblastic leukemia (pre-B ALL) is the most common pediatric cancer, but there are no useful zebrafish pre-B ALL models. We describe the first highly- penetrant zebrafish pre-B ALL, driven by human MYC. Leukemias express B lymphoblast-specific genes and are distinct from T cell ALL (T-ALL)-which these fish also develop. Zebrafish pre-B ALL shares in vivo features and expression profiles with human pre-B ALL, and these profiles differ from zebrafish T-ALL or normal B and T cells. These animals also exhibit aberrant lymphocyte development. As the only robust zebrafish pre-B ALL model and only example where T-ALL also develops, this model can reveal differences between MYC-driven pre-B vs. T-ALL and be exploited to discover novel pre-B ALL therapies.

Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma

Cancer cell

2023 Apr 08

Gaglia, G;Burger, ML;Ritch, CC;Rammos, D;Dai, Y;Crossland, GE;Tavana, SZ;Warchol, S;Jaeger, AM;Naranjo, S;Coy, S;Nirmal, AJ;Krueger, R;Lin, JR;Pfister, H;Sorger, PK;Jacks, T;Santagata, S;
PMID: 37059105 | DOI: 10.1016/j.ccell.2023.03.015

Lymphocytes are key for immune surveillance of tumors, but our understanding of the spatial organization and physical interactions that facilitate lymphocyte anti-cancer functions is limited. We used multiplexed imaging, quantitative spatial analysis, and machine learning to create high-definition maps of lung tumors from a Kras/Trp53-mutant mouse model and human resections. Networks of interacting lymphocytes ("lymphonets") emerged as a distinctive feature of the anti-cancer immune response. Lymphonets nucleated from small T cell clusters and incorporated B cells with increasing size. CXCR3-mediated trafficking modulated lymphonet size and number, but T cell antigen expression directed intratumoral localization. Lymphonets preferentially harbored TCF1+ PD-1+ progenitor CD8+ T cells involved in responses to immune checkpoint blockade (ICB) therapy. Upon treatment of mice with ICB or an antigen-targeted vaccine, lymphonets retained progenitor and gained cytotoxic CD8+ T cell populations, likely via progenitor differentiation. These data show that lymphonets create a spatial environment supportive of CD8+ T cell anti-tumor responses.
T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy

Clinical cancer research : an official journal of the American Association for Cancer Research

2023 Mar 14

Frank, ML;Lu, K;Erdogan, C;Han, Y;Hu, J;Wang, T;Heymach, JV;Zhang, J;Reuben, A;
PMID: 36413126 | DOI: 10.1158/1078-0432.CCR-22-2469

T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Genotype-phenotype mapping of a patient-derived lung cancer organoid biobank identifies NKX2-1-defined Wnt dependency in lung adenocarcinoma

Cell reports

2023 Mar 28

Ebisudani, T;Hamamoto, J;Togasaki, K;Mitsuishi, A;Sugihara, K;Shinozaki, T;Fukushima, T;Kawasaki, K;Seino, T;Oda, M;Hanyu, H;Toshimitsu, K;Emoto, K;Hayashi, Y;Asakura, K;Johnson, TA;Terai, H;Ikemura, S;Kawada, I;Ishii, M;Hishida, T;Asamura, H;Soejima, K;Nakagawa, H;Fujii, M;Fukunaga, K;Yasuda, H;Sato, T;
PMID: 36870059 | DOI: 10.1016/j.celrep.2023.112212

Human lung cancer is a constellation of tumors with various histological and molecular properties. To build a preclinical platform that covers this broad disease spectrum, we obtained lung cancer specimens from multiple sources, including sputum and circulating tumor cells, and generated a living biobank consisting of 43 lines of patient-derived lung cancer organoids. The organoids recapitulated the histological and molecular hallmarks of the original tumors. Phenotypic screening of niche factor dependency revealed that EGFR mutations in lung adenocarcinoma are associated with the independence from Wnt ligands. Gene engineering of alveolar organoids reveals that constitutive activation of EGFR-RAS signaling provides Wnt independence. Loss of the alveolar identity gene NKX2-1 confers Wnt dependency, regardless of EGFR signal mutation. Sensitivity to Wnt-targeting therapy can be stratified by the expression status of NKX2-1. Our results highlight the potential of phenotype-driven organoid screening and engineering for the fabrication of therapeutic strategies to combat cancer.
Vitamin D treatment induces in vitro and ex vivo transcriptomic changes indicating anti-tumor effects

FASEB journal : official publication of the Federation of American Societies for Experimental Biology

2022 Jan 01

Vaughan-Shaw, PG;Blackmur, JP;Grimes, G;Ooi, LY;Ochocka-Fox, AM;Dunbar, K;von Kriegsheim, A;Rajasekaran, V;Timofeeva, M;Walker, M;Svinti, V;Din, FVN;Farrington, SM;Dunlop, MG;
PMID: 34918389 | DOI: 10.1096/fj.202101430RR

Vitamin D deficiency is associated with risk of several common cancers, including colorectal cancer (CRC). Here we have utilized patient derived epithelial organoids (ex vivo) and CRC cell lines (in vitro) to show that calcitriol (1,25OHD) increased the expression of the CRC tumor suppressor gene, CDH1, at both the transcript and protein level. Whole genome expression analysis demonstrated significant differential expression of a further six genes after 1,25OHD treatment, including genes with established links to carcinogenesis GADD45, EFTUD1 and KIAA1199. Furthermore, gene ontologies relevant to carcinogenesis were enriched by 1,25OHD treatment (e.g., 'regulation of Wnt signaling pathway', 'regulation of cell death'), with common enriched processes across in vitro and ex vivo cultures including 'negative regulation of cell proliferation', 'regulation of cell migration' and 'regulation of cell differentiation'. Our results identify genes and pathways that are modifiable by calcitriol that have links to CRC tumorigenesis. Hence the findings provide potential mechanism to the epidemiological and clinical trial data indicating a causal association between vitamin D and CRC. We suggest there is strong rationale for further well-designed trials of vitamin D supplementation as a novel CRC chemopreventive and chemotherapeutic agent.
The Presence of Interleukin-13 at Pancreatic ADM/PanIN Lesions Alters Macrophage Populations and Mediates Pancreatic Tumorigenesis.

Cell Rep.

2017 May 16

Liou GY, Bastea L, Fleming A, Döppler H, Edenfield BH, Dawson DW, Zhang L, Bardeesy N, Storz P.
PMID: 28514653 | DOI: 10.1016/j.celrep.2017.04.052

The contributions of the innate immune system to the development of pancreatic cancer are still ill defined. Inflammatory macrophages can initiate metaplasia of pancreatic acinar cells to a duct-like phenotype (acinar-to-ductal metaplasia [ADM]), which then gives rise to pancreatic intraepithelial neoplasia (PanIN) when oncogenic KRas is present. However, it remains unclear when and how this inflammatory macrophage population is replaced by tumor-promoting macrophages. Here, we demonstrate the presence of interleukin-13 (IL-13), which can convert inflammatory into Ym1+ alternatively activated macrophages, at ADM/PanIN lesions. We further show that Ym1+ macrophages release factors, such as IL-1ra and CCL2, to drive pancreatic fibrogenesis and tumorigenesis. Treatment of mice expressing oncogenic KRas under an acinar cell-specific promoter with a neutralizing antibody for IL-13 significantly decreased the accumulation of alternatively activated macrophages at these lesions, resulting in decreased fibrosis and lesion growth.

The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1.

Nat Cell Biol.

2017 May 29

Yuan JH, Liu XN, Wang TT, Pan W, Tao QF, Zhou WP, Wang F, Sun SH.
PMID: 28553938 | DOI: 10.1038/ncb3538

Understanding the roles of splicing factors and splicing events during tumorigenesis would open new avenues for targeted therapies. Here we identify an oncofetal splicing factor, MBNL3, which promotes tumorigenesis and indicates poor prognosis of hepatocellular carcinoma patients. MBNL3 knockdown almost completely abolishes hepatocellular carcinoma tumorigenesis. Transcriptomic analysis revealed that MBNL3 induces lncRNA-PXN-AS1 exon 4 inclusion. The transcript lacking exon 4 binds to coding sequences of PXN mRNA, causes dissociation of translation elongation factors from PXN mRNA, and thereby inhibits PXN mRNA translation. In contrast, the transcript containing exon 4 preferentially binds to the 3' untranslated region of PXN mRNA, protects PXN mRNA from microRNA-24-AGO2 complex-induced degradation, and thereby increases PXN expression. Through inducing exon 4 inclusion, MBNL3 upregulates PXN, which mediates the pro-tumorigenic roles of MBNL3. Collectively, these data demonstrate detailed mechanistic links between an oncofetal splicing factor, a splicing event and tumorigenesis, and establish splicing factors and splicing events as potential therapeutic targets.

Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells

Nat Commun.

2018 Mar 19

Huels DJ, Bruens L, Hodder MC, Cammareri P, Campbell AD, Ridgway RA, Gay DM, Solar-Abboud M, Faller WJ, Nixon C, Zeiger LB, McLaughlin ME, Morrissey E, Winton DJ, Snippert HJ, van Rheenen J, Sansom OJ.
PMID: 29556067 | DOI: 10.1038/s41467-018-03426-2

Many epithelial stem cell populations follow a pattern of stochastic stem cell divisions called 'neutral drift'. It is hypothesised that neutral competition between stem cells protects against the acquisition of deleterious mutations. Here we use a Porcupine inhibitor to reduce Wnt secretion at a dose where intestinal homoeostasis is maintained despite a reduction of Lgr5+ stem cells. Functionally, there is a marked acceleration in monoclonal conversion, so that crypts become rapidly derived from a single stem cell. Stem cells located further from the base are lost and the pool of competing stem cells is reduced. We tested whether this loss of stem cell competition would modify tumorigenesis. Reduction of Wnt ligand secretion accelerates fixation of Apc-deficient cells within the crypt leading to accelerated tumorigenesis. Therefore, ligand-based Wnt signalling influences the number of stem cells, fixation speed of Apc mutations and the speed and likelihood of adenoma formation.

Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with Pten loss to accelerate progression and castration-resistant growth

Cancer Res

2018 Mar 26

Pearson HB, Li J, Meniel VS, Fennell CM, Waring P, Montgomery KG, Rebello RJ, Macpherson AA, Koushyar S, Furic L, Cullinane C, Clarkson RW, Smalley MJ, Simpson KJ, Phesse TJ, Shepherd PR, Humbert PO, Sansom OJ, Phillips WA.
PMID: 29581176 | DOI: 10.1158/2159-8290.CD-17-0867

Genetic alterations that potentiate PI3K signalling are frequent in prostate cancer, yet how different genetic drivers of the PI3K cascade contribute to prostate cancer is unclear. Here, we report PIK3CA mutation/amplification correlates with poor prostate cancer patient survival. To interrogate the requirement of different PI3K genetic drivers in prostate cancer, we employed a genetic approach to mutate Pik3ca in mouse prostate epithelium. We show Pik3caH1047R mutation causes p110α-dependent invasive prostate carcinoma in-vivo. Furthermore, we report PIK3CA mutation and PTEN loss co-exist in prostate cancer patients, and can cooperate in-vivo to accelerate disease progressionvia AKT-mTORC1/2 hyperactivation. Contrasting single mutants that slowly acquire castration-resistant prostate cancer (CRPC), concomitant Pik3ca mutation and Pten loss caused de-novo CRPC. Thus, Pik3ca mutation and Pten deletion are not functionally redundant. Our findings indicate that PIK3CA mutation is an attractive prognostic indicator for prostate cancer that may cooperate with PTEN loss to facilitate CRPC in patients.

Pages

  • « first
  • ‹ previous
  • …
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?