Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (26)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • (-) Remove HPV filter HPV (19)
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • (-) Remove TERT filter TERT (7)
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (7) Apply RNAscope 2.0 Assay filter
  • RNAscope (2) Apply RNAscope filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter
  • TBD (1) Apply TBD filter

Research area

  • (-) Remove Cancer filter Cancer (26)
  • HPV (15) Apply HPV filter
  • Infectious Disease (11) Apply Infectious Disease filter
  • Inflammation (1) Apply Inflammation filter
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (26) Apply Publications filter
MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer.

J Pathol.

2017 Sep 09

Baena-Del Valle JA, Zheng Q, Esopi DM, Rubenstein M, Hubbard GK, Moncaliano MC, Hruszkewycz A, Vaghasia A, Yegnasubramanian S, Wheelan SJ, Meeker AK, Heaphy CM, Graham MK, De Marzo AM.
PMID: 28888037 | DOI: 10.1002/path.4980

Telomerase consists of at least two essential elements, an RNA component hTR or TERC that contains the template for telomere DNA addition, and a catalytic reverse transcriptase (TERT). While expression of TERT has been considered the key rate limiting component for telomerase activity, increasing evidence suggests an important role for the regulation of TERC in telomere maintenance and perhaps other functions in human cancer. By using three orthogonal methods including RNAseq, RT-qPCR, and an analytically validated chromogenic RNA in situ hybridization assay, we report consistent overexpression of TERC in prostate cancer. This overexpression occurs at the precursor stage (e.g. high grade prostatic intraepithelial neoplasia or PIN), and persists throughout all stages of disease progression. Levels of TERC correlate with levels of MYC (a known driver of prostate cancer) in clinical samples and we also show the following: forced reductions of MYC result in decreased TERC levels in 8 cancer cell lines (prostate, lung, breast, and colorectal); forced overexpression of MYC in PCa cell lines, and in the mouse prostate, results in increased TERC levels; human TERC promoter activity is decreased after MYC silencing; and MYC occupies the TERC locus as assessed by chromatin immunoprecipitation (ChIP). Finally, we show that knockdown of TERC by siRNA results in reduced proliferation of prostate cancer cell lines. These studies indicate that TERC is consistently overexpressed in all stages of prostatic adenocarcinoma, and its expression is regulated by MYC. These findings nominate TERC as a novel prostate cancer biomarker and therapeutic target.

Do high-risk human papillomaviruses cause oral cavity squamous cell carcinoma?

Oral Oncology

Mirghanie H, Amen F, Moreau F, Lacau St Guily J.
PMID: http

High-risk human papillomaviruses (HR-HPV) are an established etiologic factor for a growing number of oropharyngeal cancers. However, their potential role in other upper aerodigestive tract locations is still a matter of debate, particularly in the oral cavity. This is of paramount importance as in the future diagnosis, treatment and follow up in head and neck squamous cell carcinoma may vary according to HPV status. This article reviews the recent published data and highlights some of the pitfalls that have hampered the accurate assessment of HR-HPV oncological role outside the oropharynx. We demonstrate that, in contrast to the oropharynx, only a small fraction of cancers located in the oral cavity seem to be HPV-related even in young non-smoking non-drinking patients. We emphasize several relevant factors to consider in assumed HPV-induced oral cavity cancers and discuss the current theories that explain why HPV-induced cancers arise preferentially in the oropharynx.
The landscape of fusion transcripts in spitzoid melanoma and biologically indeterminate spitzoid tumors by RNA sequencing.

Mod Pathol.

2016 Feb 19

Wu G, Barnhill RL, Lee S, Li Y, Shao Y, Easton J, Dalton J, Zhang J, Pappo A, Bahrami A.
PMID: 26892443 | DOI: 10.1038/modpathol.2016.37.

Kinase activation by chromosomal translocations is a common mechanism that drives tumorigenesis in spitzoid neoplasms. To explore the landscape of fusion transcripts in these tumors, we performed whole-transcriptome sequencing using formalin-fixed, paraffin-embedded (FFPE) tissues in malignant or biologically indeterminate spitzoid tumors from 7 patients (age 2-14 years). RNA sequence libraries enriched for coding regions were prepared and the sequencing was analyzed by a novel assembly-based algorithm designed for detecting complex fusions. In addition, tumor samples were screened for hotspot TERT promoter mutations, and telomerase expression was assessed by TERT mRNA in situ hybridization (ISH). Two patients had widespread metastasis and subsequently died of disease, and 5 patients had a benign clinical course on limited follow-up (mean: 30 months). RNA sequencing and TERT mRNA ISH were successful in six tumors and unsuccessful in one disseminating tumor because of low RNA quality. RNA sequencing identified a kinase fusion in five of the six sequenced tumors: TPM3-NTRK1 (2 tumors), complex rearrangements involving TPM3, ALK, and IL6R (1 tumor), BAIAP2L1-BRAF (1 tumor), and EML4-BRAF (1 disseminating tumor). All predicted chimeric transcripts were expressed at high levels and contained the intact kinase domain. In addition, two tumors each contained a second fusion gene, ARID1B-SNX9 or PTPRZ1-NFAM1. The detected chimeric genes were validated by home-brew break-apart or fusion fluorescence in situ hybridization (FISH). The two disseminating tumors each harbored the TERT promoter -124C>T (Chr 5:1,295,228 hg19 coordinate) mutation, whereas the remaining five tumors retained the wild-type gene. The presence of the -124C>T mutation correlated with telomerase expression by TERT mRNA ISH. In summary, we demonstrated complex fusion transcripts and novel partner genes for BRAF by RNA sequencing of FFPE samples. The diversity of gene fusions demonstrated by RNA sequencing defines the molecular heterogeneity of spitzoid neoplasms.

Detection of mRNA of Telomerase Protein in Benign Naevi and Melanomas Using RNAscope.

Appl Immunohistochem Mol Morphol.

2018 Aug 08

Baltzarsen PB, Georgsen JB, Nielsen PS, Steiniche T, Stougaard M.
PMID: 30095463 | DOI: 10.1097/PAI.0000000000000690

Telomerase is reactivated in most cancers and is possibly an early driver event in melanoma. Our aim was to test a novel in situ hybridization technique, RNAscope, for the detection of human telomerase reverse transcriptase (hTERT) mRNA in archival formalin-fixed, paraffin-embedded (FFPE) tissue and to compare the mRNA expression of melanomas and benign naevi. Furthermore, we wanted to see if hTERT mRNA could be a diagnostic or prognostic marker of melanoma. In situ hybridization for the detection of hTERT mRNA was performed on FFPE tissue of 17 melanomas and 13 benign naevi. We found a significant difference in the expression of hTERT mRNA between melanomas and benign naevi (P<0.001) and the expression of hTERT mRNA correlated with Breslow thickness (ρ=0.56, P=0.0205) and the Ki67 proliferation index (ρ=0.72, P=0.001). This study showed that RNAscope was a reliable in situ hybridization method for the detection of hTERT mRNA in FFPE tissue of melanomas and benign naevi. hTERT mRNA was more abundantly expressed in melanomas compared with benign naevi, but cannot be used solely as a diagnostic marker due to an overlap in expression. The hTERT mRNA expression in melanomas correlated with the prognostic markers Breslow thickness and the Ki67 index indicating a prognostic potential of hTERT mRNA.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited.

Prognostic significance of human papillomavirus viral load in correlation with different therapeutic modalities in cervical cancer patients

Pathology - Research and Practice

2016 Jun 25

Cao M, Shah W, Qi J, Zhou Y, Wang Y, Chen H.
PMID: - | DOI: 10.1016/j.prp.2016.06.011

Abstract

Purpose

High-risk human papillomavirus (HR-HPV) infections was the causal factor in the development of cervical cancer, but the significance of HPV viral load in the prediction of the response to current therapeutic approaches had not reached consensus. The present study was performed to assess the high risk HPV viral load of cervical cancer patients who underwent radiotherapy alone or in combination with chemotherapy or hyperthermotherapy or both in correlation to long-term survival.

Methods

116 cervical cancer patients were recruited and assigned into four groups of different therapeutic modalities. The prevalent high risk types of HPV 16, 18, 58 were detected by type specific in situ hybridization (ISH), and HPV mRNA was detected by RNA scope assay using RNA scope 2.0 FFPE Reagent Kit. Semi-quantification of the HR-HPV viral load was measured based on the intensity of ISH signal captured from the tumor nests in the grey scale.

Results

The HR-HPV viral load had a significant negative correlation with survival (rs = −0.368,P = 0.001). The 15-year survival rate of low viral load group was 68.18%, moderate viral load group was 52.17%, and high viral load group was 34.69% (P = 0.001). HPV mRNA expression was strongly consistent with HPV viral load. The 15-year survival rates of different therapeutic groups were 39.29%, 58.62%, 50.00%, 55.17%, respectively (P = 0.545). Combinatorial treatment modalities improved the actual survival, which demonstrated no significant difference among 5,10 and 15 years comparison. Cox regression analysis showed that the relative risk of death was obviously higher in the HPV 18 single positive group and high HPV viral load group.

Conclusions

The semi-quantitive viral load assessment in situ is a feasible approach in clinical practice. The more the HPV viral load was, the worse the survival of patients would be. The combinational treatments were in favor of the disease-stabilization.

Effect of human papillomavirus 16 oncoproteins on oncostatin M upregulation in oral squamous cell carcinoma

Med Oncol.

2016 Jun 27

Chuerduangphui J, Pientong C, Chaiyarit P, Patarapadungkit N, Chotiyano A, Kongyingyoes B, Promthet S, Swangphon P, Wongjampa W, Ekalaksananan T.
PMID: 27349249 | DOI: 10.1007/s12032-016-0800-6

Human papillomavirus (HPV) infection modulates several host cytokines contributing to cancer development. Oncostatin M (OSM), an IL-6 family cytokine, acts to promote cell senescence and inhibit growth. Its dysregulation promotes cell survival, cell proliferation and metastasis in various malignancies. The effect of HPV on OSM dysregulation has not been investigated. To elucidate this, immunohistochemistry was used on formalin-fixed, paraffin-embedded oral squamous cell carcinoma (OSCC) tissues: HPV-positive (50) and HPV-negative (50) cases. Immortalized human cervical keratinocytes expressing HPV16E6 (HCK1T, Tet-On system) were used to demonstrate the role of HPV16E6 in OSM expression. In addition, a vector containing HPV16E6/E7 was transiently transfected into oral cancer cell lines. Cell viability, cell-cycle progression and cell migration were evaluated using flow cytometry and a wound healing assay, respectively. The results showed various intensities of OSM expression in OSCC. Interestingly, the median percentages of strongly stained cells were significantly higher in HPV-positive OSCCs than in HPV-negative OSCCs. To explore the role of HPV oncoproteins on OSM expression, the expression of HPV16E6 in the HCK1T Tet-On condition was induced by doxycycline and HPV16E6 was found to significantly upregulate levels of OSM mRNA and protein, with concomitant upregulation of c-Myc. In addition, the levels of OSM mRNA and protein in E6/E7 transiently transfected oral cancer cells also gradually increased in a time-dependent manner and these transfected cells showed greater viability and higher migration rates and cell-cycle progression than controls. This result demonstrates that HPV16 oncoproteins upregulate OSM and play an important role to promote OSCC development.

Linear viral load increase of a single HPV-type in women with multiple HPV infections predicts progression to cervical cancer

Int J Cancer.

2016 Jun 24

Depuydt CE, Thys S, Beert J, Jonckheere J, Salembier G, Bogers JJ.
PMID: 27339821 | DOI: 10.1002/ijc.30238

Persistent high-risk human papillomavirus (HPV) infection is strongly associated with development of high-grade cervical intraepithelial neoplasia or cancer (CIN3+). In single type infections serial type-specific viral-load measurements predict the natural history of the infection. In infections with multiple HPV-types, the individual type-specific viral-load profile could distinguish progressing HPV-infections from regressing infections. A case-cohort natural history study was established using samples from untreated women with multiple HPV-infections who developed CIN3+ (n=57) or cleared infections (n=88). Enriched cell pellet from liquid based cytology samples were subjected to a clinically validated real-time qPCR-assay (18 HPV-types). Using serial type-specific viral-load measurements (≥3) we calculated HPV-specific slopes and coefficient of determination (R2 ) by linear regression. For each woman slopes and R2 were used to calculate which HPV-induced processes were ongoing (progression, regression, serial transient, transient). In transient infections with multiple HPV-types, each single HPV-type generated similar increasing (0.27copies/cell/day) and decreasing (-0.27copies/cell/day) viral-load slopes. In CIN3+ at least one of the HPV-types had a clonal progressive course (R2 ≥0.85;0.0025copies/cell/day). In selected CIN3+ cases (n=6) immunostaining detecting type-specific HPV 16,31,33,58 and 67 RNA showed an even staining in clonal populations (CIN3+), whereas in transient virion-producing infections the RNA-staining was less in the basal layer compared to the upper layer where cells were ready to desquamate and release newly-formed virions. RNA-hybridization patterns matched the calculated ongoing processes measured by R2 and slope in serial type-specific viral-load measurements preceding the biopsy. In women with multiple HPV-types, serial type-specific viral-load measurements predict the natural history of the different HPV-types, and elucidates HPV-genotype attribution. 

ARID1A and TERT promoter mutations in dedifferentiated meningioma

Cancer Genetics (2015).

Abedalthagafi MS, Wenya Linda Bi WL, Merrill PH, Gibson WJ, Rose MF, Du Z, Francis JM, Du R, Dunn IF, Ligon AH, Beroukhim R, Santagata S.
PMID: 25963524 | DOI: 10.1016/j.cancergen.2015.03.005

While WHO grade I meningiomas are considered benign, patients with WHO grade III meningiomas have very high mortality. The principles underlying tumor progression in meningioma are largely unknown yet a detailed understanding of these mechanisms will be required for effective management of patients with these high-grade, lethal tumors. We present a case of an intraventricular meningioma that at first presentation displayed remarkable morphologic heterogeneity – comprised of distinct regions independently fulfilling histopathologic criteria for WHO grade I, II and III designations. The lowest-grade regions had classic meningothelial features while the highest grade regions were markedly dedifferentiated. While progression in meningiomas is generally observed during recurrence following radiation and systemic medical therapies the current case offers us a snapshot into histologic progression and intratumor heterogeneity in a native, pre-treatment context. Using whole exome sequencing (WES) and high resolution array comparative genomic hybridization (aCGH) we observe marked genetic heterogeneity between the various areas. Notably, in the higher grade regions we find increased aneuploidy with progressive loss of heterozygosity, the emergence of mutations in the TERT promoter and compromise of ARID1A. These findings provide new insights into intratumoral heterogeneity in the evolution of malignant phenotypes in anaplastic meningiomas and potential pathways of malignant progression.
A novel RT‐PCR method for quantification of human papillomavirus transcripts in archived tissues and its application in oropharyngeal cancer prognosis. 

International Journal of Cancer, 132(4), 882–890.

Gao G, Chernock RD, Gay HA, Thorstad WL, Zhang TR, Wang H, Ma XJ, Luo Y, Lewis JS Jr, Wang X (2013).
PMID: 22821242 | DOI: 10.1002/ijc.27739.

Oropharyngeal squamous cell carcinoma (SCC) is strongly associated with human papillomavirus (HPV) infection, which is distinctively different from most other head and neck cancers. However, a robust quantitative reverse transcription PCR (RT-qPCR) method for comprehensive expression profiling of HPV genes in routinely fixed tissues has not been reported. To address this issue, we have established a new real-time RT-PCR method for the expression profiling of the E6 and E7 oncogenes from 13 high-risk HPV types. This method was validated in cervical cancer and by comparison with another HPV RNA detection method (in situ hybridization) in oropharyngeal tumors. In addition, the expression profiles of selected HPV-related human genes were also analyzed. HPV E6 and E7 expression profiles were then analyzed in 150 archived oropharyngeal SCC samples and compared with other variables and with patient outcomes. Our study showed that RT-qPCR and RNA in situ hybridization were 100% concordant in determining HPV status. HPV transcriptional activity was found in most oropharyngeal SCC (81.3%), a prevalence that is higher than in previous studies. Besides HPV16, three other HPV types were also detected, including 33, 35 and 18. Furthermore, HPV and p16 had essentially identical expression signatures, and both HPV and p16 were prognostic biomarkers for the prediction of disease outcome. Thus, p16 mRNA or protein expression signature is a sensitive and specific surrogate marker for HPV transcriptional activity (all genotypes combined).
Telomerase reactivation induces progression of mouse Braf V600E-driven thyroid cancers without telomere lengthening

bioRxiv : the preprint server for biology

2023 Jan 24

Landa, I;Thornton, CE;Xu, B;Haase, J;Krishnamoorthy, GP;Hao, J;Knauf, JA;Herbert, ZT;Blasco, MA;Ghossein, R;Fagin, JA;
PMID: 36747657 | DOI: 10.1101/2023.01.24.525280

Mutations in the promoter of the telomerase reverse transcriptase ( TERT ) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert -123C>T ) and crossed it with thyroid-specific Braf V600E -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf V600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf V600E +Tert -123C>T and Braf V600E +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.
[Primary ovarian squamous cell carcinoma: clinicopathological features and prognostic analysis of fifteen cases]

Zhonghua bing li xue za zhi = Chinese journal of pathology

2022 Apr 08

Xi, Y;Zhang, ML;He, C;Cheng, GP;Jin, JY;Fang, XH;Zhu, T;Su, D;
PMID: 35359045 | DOI: 10.3760/cma.j.cn112151-20210719-00516

Objective: To assess the clinical features and treatment outcomes in patients with primary ovarian squamous cell carcinoma (POSCC). Methods: Fifteen patients with primary ovarian squamous cell carcinoma diagnosed from January 2009 to December 2018 in Cancer Hospital of the University of Chinese Academy of Sciences were collected. The expression of p16, hMLH1, hMSH2, hMSH6 and PMS2 in POSCC was detected by immunohistochemistry, and the status of high-risk human papillomavirus (HPV) by RNAscope test. Results: Squamous cell carcinoma with different degrees of differentiation was found in 15 cases, including three cases with high differentiation and 12 cases with medium to low differentiation. There were four cases with in situ squamous cell carcinoma, four cases with teratoma, one case with endometrial carcinoma/atypical hyperplasia, and one case with endometriosis. p16 was expressed in five cases (5/15), indicating coexisting high-risk HPV infection. There was no high-risk HPV infection in the remaining 10 cases, and p16 staining was negative. There was no deficient mismatch repair protein in all cases. The overall survival time (P=0.038) and progression free survival (P=0.045) of patients with high-risk HPV infection were longer than those without HPV infection. Conclusions: POSCC is more commonly noted in postmenopausal women and often occurs unilaterally. Elevated serological indexes CA125 and SCC are the most common finding. Morphologically, the tumors show variable degrees of differentiation, but the current data suggest that the degree of differentiation cannot be used as an independent prognostic index. High-risk HPV infection may be associated with the occurrence of POSCC, and that the prognosis of POSCC patients with HPV infection is better than that of patients without infection.
Application of p16 Immunohistochemistry and RNA In Situ Hybridization in the Classification of Adenoid Basal Tumors of the Cervix

Int J Gynecol Pathol.

2016 Jan 01

Goyal A, Wang Z, Przybycin CG, Yang B.
PMID: 26352551 | DOI: 10.1097/PGP.0000000000000221.

Our understanding of adenoid basal tumors of the cervix has evolved over time. Most of the proliferations referred to as adenoid basal carcinoma have a clinically benign course-leading some to suggest the term "adenoid basal epithelioma." However, rarely, these may be associated with invasive carcinomas. These tumors have been etiologically linked with high-risk human papillomavirus (HR-HPV) infection. Here, we investigate the use of p16 immunohistochemistry and HR-HPV RNA in situ hybridization (ISH) in the classification of adenoid basal tumors of the cervix. Seventeen cases of adenoid basal tumors of the cervix were included. The patients' age ranged from 19 to 79 yr (average, 59 yr). p16 immunostain was performed on all cases and RNA ISH was performed in 4 cases with available formalin-fixed paraffin-embedded tissue. There were 11 low-grade tumors, 5 frankly invasive carcinomas, and 1 with histologic features that were intermediate between the former 2 categories. p16 immunostain was negative or showed patchy cytoplasmic staining in the low-grade tumors and was strongly and diffusely positive in the invasive carcinomas. HR-HPV RNA ISH was negative in the 3 low-grade tumors and was positive in 1 case of invasive carcinoma including the adenoid basal component. Distinct p16 immunostaining and HR-HPV RNA ISH patterns exist between low-grade adenoid basal tumors and invasive adenoid basal carcinomas. Our study indicates that p16 immunostaining and HR-HPV RNA ISH can be employed as useful ancillary tools in differentiating between noninvasive and invasive adenoid basal tumors along with careful histopathologic evaluation.

Pages

  • 1
  • 2
  • 3
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?