ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
PLoS One.
2016 Aug 04
Damasceno KA, Ferreira E, Estrela-Lima A, Gamba Cde O, Miranda FF, Alves MR, Rocha RM, de Barros AL, Cassali GD.
PMID: 27490467 | DOI: 10.1371/journal.pone.0160419
Versican expression promotes tumor growth by destabilizing focal cell contacts, thus impeding cell adhesion and facilitating cell migration. It not only presents or recruits molecules to the cell surface, but also modulates gene expression levels and coordinates complex signal pathways. Previously, we suggested that the interaction between versican and human epidermal growth factor receptors may be directly associated with tumor aggressiveness. Thus, the expression of EGFR and HER-2 in these neoplasms may contribute to a better understanding of the progression mechanisms in malignant mammary tumors. The purpose of this study was to correlate the gene and protein expressions of EGFR and HER2 by RNA In Situ Hybridization (ISH) and immunohistochemistry (IHC), respectively, and their relationship with the versican expression in carcinomas in mixed tumors and carcinosarcomas of the canine mammary gland. The results revealed that EGFR mRNA expression showed a significant difference between in situ and invasive carcinomatous areas in low and high versican expression groups. Identical results were observed in HER-2 mRNA expression. In immunohistochemistry analysis, neoplasms with low versican expression showed greater EGFR immunostaining in the in situ areas than in invasive areas, even as the group presenting high versican expression displayed greater EGFR and HER-2 staining in in situ areas. Significant EGFR and HER-2 mRNA and protein expressions in in situ carcinomatous sites relative to invasive areas suggest that these molecules play a role during the early stages of tumor progression.
Human pathology, 44(4):487–94.
Kim MA, Jung JE, Lee HE, Yang HK, Kim WH (2013)
PMID: 23084583 | DOI: 10.1016/j.humpath.2012.06.022.
The Journal of Molecular Diagnostics, 15(2), 210–219.
Wang Z, Portier BP, Gruver AM, Bui S, Wang H, Su N, Vo HT, Ma XJ, Luo Y, Budd GT, Tubbs RR (2013).
PMID: 23305906 | DOI: 10.1016/j.jmoldx.2012.10.003.
Human Pathology
2016 Apr 08
Gupta M, Babic A, Beck AH, Terry K.
PMID: - | DOI: 10.1016/j.humpath.2016.03.006
Inflammatory cytokines, like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), are elevated in ovarian cancer. Differences in cytokine expression by histologic subytpe or ovarian cancer risk factors can provide useful insight into ovarian cancer risk and etiology. We used ribonucleic acid (RNA) in-situ hybridization to assess TNF-α and IL-6 expression on tissue microarray slides from 78 epithelial ovarian carcinomas (51 serous, 12 endometrioid, 7 clear cell, 2 mucinous, 6 other) from a population-based case control study. Cytokine expression was scored semi-quantitatively and odds ratios (OR) and 95% confidence intervals (CI) were calculated using polytomous logistic regression. TNF-α was expressed in 46% of the tumors while sparse IL-6 expression was seen only 18% of the tumors. For both markers, expression was most common in high grade serous carcinomas followed by endometrioid carcinomas. Parity was associated with a reduced risk of TNF-α positive (OR = 0.3, 95% CI: 0.1-0.7 for 3 or more children versus none) but not TNF-α negative tumors (p-heterogeneity = 0.02). In contrast, current smoking was associated with a nearly three fold increase in risk of TNF-α negative (OR = 2.8, 95% CI: 1.2, 6.6) but not TNF-α positive tumors (p-heterogeneity = 0.06). Our data suggests that TNF-α expression in ovarian carcinoma varies by histologic subtype and provides some support for the role of inflammation in ovarian carcinogenesis. The novel associations detected in our study need to be validated in a larger cohort of patients in future studies.
PLosS One
2020 Feb 14
Seung BJ, Cho SH, Kim SH, Lim HY, Sur JH
PMID: 32059046 | DOI: 10.1371/journal.pone.0229031
Histopathology.
2018 Apr 19
Sawada R, Ku Y, Akita M, Otani K, Fujikura K, Itoh T, Ajiki T, Fukumoto T, Kakeji Y, Zen Y.
PMID: 29675965 | DOI: 10.1111/his.13633
Abstract
BACKGROUND & AIMS:
The present study aimed to elucidate the clinicopathological significance of IL-6 and IL-33 expression in intrahepatic cholangiocarcinomas (iCCAs) and perihilar cholangiocarcinomas (pCCAs).
METHODS:
IL-6 and IL-33 mRNA expression was examined in iCCAs (n=55) and pCCAs (n=32) using quantitative real-time PCR and a highly sensitive in situ hybridization protocol (RNAscope™ ), and expression values were correlated with clinicopathological features. According to a recently proposed classification scheme, iCCAs were separated into small- (n=33) and large-duct types (n=22).
RESULTS:
IL-6 and IL-33 expression levels were higher in large-duct iCCAs and pCCAs than in small-duct iCCAs, with a positive correlation between the values of these cytokines. In double in situ hybridization/immunostaining, IL-6 mRNA was expressed in actin-positive (myo)fibroblasts, while IL-33 was mainly produced by CD31-positive endothelial cells. Based on the average expression value as a cut-off point, cases were classified as IL-6high and IL-6low or IL-33high and IL-33low . In the combined cohort of large-duct iCCAs and pCCAs, IL-6high and IL-6low cholangiocarcinomas shared many features, while IL-33high cases had less aggressive characteristics than IL-33low cases as evidenced by lower tumour marker concentrations, smaller tumour sizes, less common vascular invasion, lower pT stages, and higher lymphocyte-to-monocyte ratios in blood. KRAS mutations were slightly less common in IL-33high cases than in IL-33low cancers (9% vs 29%; p=0.061). The strong expression of IL-33 in tissue appeared to be an independent favourable prognostic factor.
CONCLUSIONS:
IL-33high cholangiocarcinomas may represent a unique, less aggressive carcinogenetic process of the large bile ducts.
Sci Transl Med.
2016 Apr 13
Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, Wang K, Sánchez V, Dean PT, Combs SE, Hicks D, Pinto JA, Landis MD, Doimi FD, Yelensky R, Miller VA, Stephens PJ, Rimm DL, Gómez H, Chang JC, Sanders ME, Cook RS, Arteaga CL.
PMID: 27075627 | DOI: 10.1126/scitranslmed.aad3001
Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC withoutJAK2amplification. Detection ofJAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates ofJAK2amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available,JAK2amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines withJAK2copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore,JAK2amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.
PLoS One. 2014 May 30;9(5):e98528.
Seo AN, Kwak Y, Kim DW, Kang SB, Choe G, Kim WH, Lee HS.
PMID: 24879338 | DOI: 10.1371/journal.pone.0098528
Chinese Journal of Pathology
2015 Nov 30
Shafei W, Yuanyuan L, Ying J, Yufeng L, Quancai C, Zhiyong L, Xuan Z.
PMID: - | DOI: -
Objective:
To investigate in situ mRNA expression of HER 2 oncogene in breast cancers with equivocal immunohistochemical results , and to explore the potential feasibility of RNAscope technique in evaluating HER2 status in breast cancers .Methods Sixty-nine FFPE samples of invasive ductal breast cancer with equivocal HER 2 immunohistochemistry results ( IHC 2+) were collected from surgical excisions from Peking Union Medical College Hospital between June 2010 and June 2013.HER2 status and in situ mRNA expression were tested by fluorescence in situ hybridization ( FISH) and RNAscope respectively using tissue microarray constructed from tumor paraffin blocks .The results of HER2 mRNA expression were scored 0 to 4 ( from low to high levels ) according to mRNA expression in 100 cancer cells .HER2 mRNA expression was evaluated in two groups of patients , with positive and negative FISH results .Results Twenty-three of the 69 samples were FISH positive, including 16 samples that were scored 4 by RNAscope (70%,16/23), 6 samples were scored 3 ( 26%,6/23 ) and one sample was scored 2 ( 4%,1/23 ) .High in situ mRNA expression (score 4 or 3) were observed in 96%of HER2 FISH positive samples.All of samples that were scored 4 by RNAscope were FISH positive .Forty-six samples were FISH negative , including 17 samples that were scored 3 by RNAscope (37%,17/46), 25 samples were scored 2 (54%,25/46), and 4 samples were scored 1 (9%,4/46).Conclusions Breast cancer with HER2 IHC 2 +could be further classified according to in situ mRNA expression status .Among them, RNAscope score of 4 could be one of the interpretation criteria for re-testing IHC 2+samples.In situ detection of HER2 mRNA may be an additional candidate method of confirmation for HER 2 gene amplification or protein overexpression , and has potential clinical utility.
Arthritis Rheumatol. 2015 Apr 27.
Makki MS, Haseeb A, Haqqi TM.
PMID: 25917063 | DOI: 10.1002/art.39173
Cancer Prev Res (Phila). 2015 May 19.
Sfanos KS, Canene-Adams K, Hempel H, Yu SH, Simons B, Schaeffer A, Schaeffer E, Nelson WG, De Marzo AM.
PMID: 10.1016/j.jpurol.2015.04.018
Zhonghua Bing Li Xue Za Zhi.
2018 Jul 08
Wu SF, Liu YY, Liu XD, Jiang Y, Luo YF, Cui QC, Liang ZY, Zeng X.
PMID: 29996317 | DOI: 10.3760/cma.j.issn.0529-5807.2018.07.008.
Objective: To investigate human epidermal growth factor 2 (HER2) gene status and in situ mRNA expression in breast cancers with immunohistochemistry(IHC) 1+ , and to reveal HER2 positive rate in these patients to provide reference data for obtaining precise HER2 results and modifying relevant clinical strategy to breast cancer. Methods: Sixty-five IHC 1+ formalin-fixed and paraffin-embedded samples of invasive breast carcinoma of no special type (IBC-NST) were collected by surgical operation at Peking Union Medical College Hospital during 2011 to 2013. HER2 status and in situ mRNA expression were tested by fluorescence in situ hybridization (FISH) and RNAscope, respectively, by using tissue microarray. Metastatic lymph node was re-tested by FISH if HER2 status was equivocal or negative and with high expression of mRNA in the primary lesion. Results: Four of 65 samples (6.2%) were FISH positive, which included 2 cases of HER2/CEP17>2 and average HER2 copy number>4 and 2 cases of HER2/CEP17<2 and average HER2 copy number>6. In the 4 samples of HER2 positive, 2 patients showed high in situ mRNA expression (3 scores by RNAscope), 2 patients showed moderate in situ mRNA expression (2 scores by RNAscope). In addition, 3 specimens with HER2/CEP17>2 and average HER2 copy number<4 were found in all patients, which included 2 cases of high in situ mRNA expression (3 and 4 scores by RNAscope) and 1 cases of moderate in situ mRNA expression (2 scores by RNAscope). There was no significant association between HER2 status or mRNA expression and clinicopathological characteristics, including tumor size, histopathological differentiation, lymph node metastasis and lymphovascular invasion (P>0.05). Conclusions: A small number of HER2 IHC 1+ patients exist mRNA expression by using FISH method, which suggested that these patients might benefit from anti-HER2 therapy potentially. Since the importance for patients with breast cancers to develop diagnostic and therapeutic strategies from accurate molecular typing, further studies based on a larger cohort are needed to validate our findings.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com