Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (13)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • (-) Remove TERT filter TERT (7)
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • (-) Remove FGFR2 filter FGFR2 (6)
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (5) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • (-) Remove Cancer filter Cancer (13)
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (13) Apply Publications filter
MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer.

J Pathol.

2017 Sep 09

Baena-Del Valle JA, Zheng Q, Esopi DM, Rubenstein M, Hubbard GK, Moncaliano MC, Hruszkewycz A, Vaghasia A, Yegnasubramanian S, Wheelan SJ, Meeker AK, Heaphy CM, Graham MK, De Marzo AM.
PMID: 28888037 | DOI: 10.1002/path.4980

Telomerase consists of at least two essential elements, an RNA component hTR or TERC that contains the template for telomere DNA addition, and a catalytic reverse transcriptase (TERT). While expression of TERT has been considered the key rate limiting component for telomerase activity, increasing evidence suggests an important role for the regulation of TERC in telomere maintenance and perhaps other functions in human cancer. By using three orthogonal methods including RNAseq, RT-qPCR, and an analytically validated chromogenic RNA in situ hybridization assay, we report consistent overexpression of TERC in prostate cancer. This overexpression occurs at the precursor stage (e.g. high grade prostatic intraepithelial neoplasia or PIN), and persists throughout all stages of disease progression. Levels of TERC correlate with levels of MYC (a known driver of prostate cancer) in clinical samples and we also show the following: forced reductions of MYC result in decreased TERC levels in 8 cancer cell lines (prostate, lung, breast, and colorectal); forced overexpression of MYC in PCa cell lines, and in the mouse prostate, results in increased TERC levels; human TERC promoter activity is decreased after MYC silencing; and MYC occupies the TERC locus as assessed by chromatin immunoprecipitation (ChIP). Finally, we show that knockdown of TERC by siRNA results in reduced proliferation of prostate cancer cell lines. These studies indicate that TERC is consistently overexpressed in all stages of prostatic adenocarcinoma, and its expression is regulated by MYC. These findings nominate TERC as a novel prostate cancer biomarker and therapeutic target.

The landscape of fusion transcripts in spitzoid melanoma and biologically indeterminate spitzoid tumors by RNA sequencing.

Mod Pathol.

2016 Feb 19

Wu G, Barnhill RL, Lee S, Li Y, Shao Y, Easton J, Dalton J, Zhang J, Pappo A, Bahrami A.
PMID: 26892443 | DOI: 10.1038/modpathol.2016.37.

Kinase activation by chromosomal translocations is a common mechanism that drives tumorigenesis in spitzoid neoplasms. To explore the landscape of fusion transcripts in these tumors, we performed whole-transcriptome sequencing using formalin-fixed, paraffin-embedded (FFPE) tissues in malignant or biologically indeterminate spitzoid tumors from 7 patients (age 2-14 years). RNA sequence libraries enriched for coding regions were prepared and the sequencing was analyzed by a novel assembly-based algorithm designed for detecting complex fusions. In addition, tumor samples were screened for hotspot TERT promoter mutations, and telomerase expression was assessed by TERT mRNA in situ hybridization (ISH). Two patients had widespread metastasis and subsequently died of disease, and 5 patients had a benign clinical course on limited follow-up (mean: 30 months). RNA sequencing and TERT mRNA ISH were successful in six tumors and unsuccessful in one disseminating tumor because of low RNA quality. RNA sequencing identified a kinase fusion in five of the six sequenced tumors: TPM3-NTRK1 (2 tumors), complex rearrangements involving TPM3, ALK, and IL6R (1 tumor), BAIAP2L1-BRAF (1 tumor), and EML4-BRAF (1 disseminating tumor). All predicted chimeric transcripts were expressed at high levels and contained the intact kinase domain. In addition, two tumors each contained a second fusion gene, ARID1B-SNX9 or PTPRZ1-NFAM1. The detected chimeric genes were validated by home-brew break-apart or fusion fluorescence in situ hybridization (FISH). The two disseminating tumors each harbored the TERT promoter -124C>T (Chr 5:1,295,228 hg19 coordinate) mutation, whereas the remaining five tumors retained the wild-type gene. The presence of the -124C>T mutation correlated with telomerase expression by TERT mRNA ISH. In summary, we demonstrated complex fusion transcripts and novel partner genes for BRAF by RNA sequencing of FFPE samples. The diversity of gene fusions demonstrated by RNA sequencing defines the molecular heterogeneity of spitzoid neoplasms.

Detection of mRNA of Telomerase Protein in Benign Naevi and Melanomas Using RNAscope.

Appl Immunohistochem Mol Morphol.

2018 Aug 08

Baltzarsen PB, Georgsen JB, Nielsen PS, Steiniche T, Stougaard M.
PMID: 30095463 | DOI: 10.1097/PAI.0000000000000690

Telomerase is reactivated in most cancers and is possibly an early driver event in melanoma. Our aim was to test a novel in situ hybridization technique, RNAscope, for the detection of human telomerase reverse transcriptase (hTERT) mRNA in archival formalin-fixed, paraffin-embedded (FFPE) tissue and to compare the mRNA expression of melanomas and benign naevi. Furthermore, we wanted to see if hTERT mRNA could be a diagnostic or prognostic marker of melanoma. In situ hybridization for the detection of hTERT mRNA was performed on FFPE tissue of 17 melanomas and 13 benign naevi. We found a significant difference in the expression of hTERT mRNA between melanomas and benign naevi (P<0.001) and the expression of hTERT mRNA correlated with Breslow thickness (ρ=0.56, P=0.0205) and the Ki67 proliferation index (ρ=0.72, P=0.001). This study showed that RNAscope was a reliable in situ hybridization method for the detection of hTERT mRNA in FFPE tissue of melanomas and benign naevi. hTERT mRNA was more abundantly expressed in melanomas compared with benign naevi, but cannot be used solely as a diagnostic marker due to an overlap in expression. The hTERT mRNA expression in melanomas correlated with the prognostic markers Breslow thickness and the Ki67 index indicating a prognostic potential of hTERT mRNA.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited.

Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors

Cancer Res.

2016 Aug 19

Sommer A, Kopitz C, Schatz CA, Nising CF, Mahlert C, Lerchen HG, Stelte-Ludwig B, Hammer S, Greven S, Schumacher J, Braun M, Zierz R, Wittemer-Rump S, Harrenga A, Dittmer F, Reetz F, Apeler H, Jautelat R, Huynh H, Ziegelbauer K, Kreft B.
PMID: 27543601 | DOI: 10.1158/0008-5472.CAN-16-0180

The fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which is specific for the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a non-cleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC). In FGFR2-expressing cancer cell lines, this FGFR2-ADC exhibited potency in the low nM to sub-nM range and was more than 100-fold selective against FGFR2-negative cell lines. High expression levels of FGFR2 in cells correlated with efficient internalization, efficacy and cytotoxic effects in vitro. Pharmacokinetic analyses in mice bearing FGFR2-positive NCI-H716 tumors indicated that the toxophore metabolite of FGFR2-ADC was enriched more than 30-fold in tumors compared to healthy tissues. Efficacy studies demonstrated that FGFR2-ADC treatment leads to a significant tumor growth inhibition or tumor regression of cell line-based or patient-derived xenograft models of human gastric or breast cancer. Further, FGFR2 amplification or mRNA overexpression predicted high efficacy in both of these types of in vivo model systems. Taken together, our results strongly support the clinical evaluation of BAY 1187982 in cancer patients, and a Phase I study (NCT02368951) has been initiated.

Evaluation of Fibroblast Growth Factor Receptor 2 Expression, Heterogeneity and Clinical Significance in Gastric Cancer.

Pathobiology.

2015 Oct 31

Han N, Kim MA, Lee HS, Kim WH.
PMID: 26516773 | DOI: -

Abstract

BACKGROUND:
We aimed to evaluate the protein and mRNA expression of fibroblast growth factor receptor 2 (FGFR2) by immunohistochemistry (IHC) and mRNA in situ hybridization (ISH), respectively, and to assess the heterogeneity of FGFR2 expression in gastric cancer (GC).

METHODS:
A tissue microarray containing 362 surgically resected GC tissues and 135 matched metastatic lymph nodes was evaluated using FGFR2b IHC and FGFR2 ISH. FGFR2 fluorescence ISH was also performed in 188 cases.

RESULTS:
All FGFR2-amplified cases (5 of 188) showed FGFR2b protein and FGFR2 mRNA overexpression (p < 0.001), and FGFR2 amplification was not identified in FGFR2b IHC- and FGFR2 mRNA ISH-negative cases. Kaplan-Meier survival analysis revealed that FGFR2b protein and FGFR2 mRNA overexpression was significantly associated with a poor overall survival (p < 0.001 and p = 0.012, respectively), and multivariate analyses showed that FGFR2 mRNA overexpression was an independent biomarker of a poor overall survival. Intratumoral heterogeneity of FGFR2b protein and FGFR2 mRNA overexpression was observed in 5 of 9 (55.5%) and 18 of 21 (85.7%) cases, respectively. Discordant FGFR2b and FGFR2 expression results between primary and matched metastatic lymph nodes were observed in 5 of 9 (55.5%) and 4 of 14 (28.6%) cases, respectively.

CONCLUSIONS:
Intratumoral heterogeneity and discordant FGFR2b expression in primary tumors and metastatic lymph nodes are common in GC.

ARID1A and TERT promoter mutations in dedifferentiated meningioma

Cancer Genetics (2015).

Abedalthagafi MS, Wenya Linda Bi WL, Merrill PH, Gibson WJ, Rose MF, Du Z, Francis JM, Du R, Dunn IF, Ligon AH, Beroukhim R, Santagata S.
PMID: 25963524 | DOI: 10.1016/j.cancergen.2015.03.005

While WHO grade I meningiomas are considered benign, patients with WHO grade III meningiomas have very high mortality. The principles underlying tumor progression in meningioma are largely unknown yet a detailed understanding of these mechanisms will be required for effective management of patients with these high-grade, lethal tumors. We present a case of an intraventricular meningioma that at first presentation displayed remarkable morphologic heterogeneity – comprised of distinct regions independently fulfilling histopathologic criteria for WHO grade I, II and III designations. The lowest-grade regions had classic meningothelial features while the highest grade regions were markedly dedifferentiated. While progression in meningiomas is generally observed during recurrence following radiation and systemic medical therapies the current case offers us a snapshot into histologic progression and intratumor heterogeneity in a native, pre-treatment context. Using whole exome sequencing (WES) and high resolution array comparative genomic hybridization (aCGH) we observe marked genetic heterogeneity between the various areas. Notably, in the higher grade regions we find increased aneuploidy with progressive loss of heterozygosity, the emergence of mutations in the TERT promoter and compromise of ARID1A. These findings provide new insights into intratumoral heterogeneity in the evolution of malignant phenotypes in anaplastic meningiomas and potential pathways of malignant progression.
Comparison of Fibroblast Growth-factor Receptor Gene Alterations at the DNA versus Messenger RNA Level in Advanced Urothelial Cancer: Insights for Clinical Research.

Eur Urol Focus.

2017 Aug 27

Necchi A, Raggi D, Volpi CC, Giannatempo P, Colecchia M, Gloghini A.
PMID: 28855072 | DOI: 10.1016/j.euf.2017.08.002

Pan-fibroblast growth-factor receptor (FGFR) inhibitors hold promise in FGFR-altered patients, but such alterations are rare in advanced urothelial carcinoma. In order to assess whether we may increase the number of eligible patients by using different molecular techniques for detecting alterations, we pooled the results of the centralised FGFR mutation/translocation assays that were performed in Clinical Laboratory Improvement Amendments-certified laboratories within multiple phase 2 trials. At our centre, the same tissue blocks were used to analyse FGFR1-3 messenger RNA expression through messenger RNA in situ hybridisation (ISH; RNAscope 2.5 assay). From October 2016 to March 2017, 52 cases were analysed. Seventeen patients (32.7%) had an upper tract primary tumour. Ten patients (19.2%) had FGFR DNA alterations. Twenty-nine (55.8%) had positive ISH analysis: N=17 score 3, N=12 score 4. Of note, concordance between the two tests was obtained in seven out of 10 patients. Sixty percent of mutated patients had an upper tract primary tumour versus 31% of ISH-positive patients.

PATIENT SUMMARY:

We found three-fold higher frequency of fibroblast growth-factor receptor alterations at the RNA versus DNA level in advanced urothelial carcinoma, with a different distribution according to the method used and the site of the primary tumour. The evaluation of the therapeutic response to pan-fibroblast growth-factor receptor inhibitors according to the method of assessment is warranted.

FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale

Frontiers in endocrinology

2021 Aug 12

Adam, P;Kircher, S;Sbiera, I;Koehler, VF;Berg, E;Knösel, T;Sandner, B;Fenske, WK;Bläker, H;Smaxwil, C;Zielke, A;Sipos, B;Allelein, S;Schott, M;Dierks, C;Spitzweg, C;Fassnacht, M;Kroiss, M;
PMID: 34475850 | DOI: 10.3389/fendo.2021.712107

Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising.Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable.PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%; p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS.High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation.
Telomerase reactivation induces progression of mouse Braf V600E-driven thyroid cancers without telomere lengthening

bioRxiv : the preprint server for biology

2023 Jan 24

Landa, I;Thornton, CE;Xu, B;Haase, J;Krishnamoorthy, GP;Hao, J;Knauf, JA;Herbert, ZT;Blasco, MA;Ghossein, R;Fagin, JA;
PMID: 36747657 | DOI: 10.1101/2023.01.24.525280

Mutations in the promoter of the telomerase reverse transcriptase ( TERT ) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert -123C>T ) and crossed it with thyroid-specific Braf V600E -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf V600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf V600E +Tert -123C>T and Braf V600E +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.
In situ analysis of FGFR2 mRNA and comparison with FGFR2 gene copy number by dual‑color in situ hybridization in a large cohort of gastric cancer patients

Gastric Cancer

2017 Aug 29

Kuboki Y, Schatz CA, Koechert K, Schubert S, Feng J, Wittemer-Rump S, Ziegelbauer K, Krahn T, Kawano Nagatsuma A, Ochiai A.
PMID: - | DOI: 10.1007/s10120-017-0758-x

Abstract

Background

Fibroblast growth factor receptor (FGFR2) has been proposed as a target in gastric cancer. However, appropriate methods to select patients for anti-FGFR2 therapies have not yet been established.

Methods

We used in situ techniques to investigate FGFR2 mRNA expression and gene amplification in a large cohort of 1036 Japanese gastric cancer patients. FGFR2 mRNA expression was determined by RNAscope. FGFR2 gene amplification was determined by dual-color in situ hybridization (DISH).

Results

We successfully analyzed 578 and 718 samples by DISH and RNAscope, respectively; 2% (12/578) showed strong FGFR2 gene amplification (FGFR2:CEN10 >10); moderate FGFR2gene amplification (FGFR2:CEN10 <10; ≥2) was detected in 8% (47/578); and high FGFR2 mRNA expression of score 4 (>10 dots/cell and >10% of positive cells with dot clusters under a 20× objective) was seen in 4% (29/718). For 468 samples, both mRNA and DISH data were available. FGFR2 mRNA expression levels were associated with gene amplification; FGFR2 mRNA levels were highest in the highly amplified samples (n = 12). All highly amplified samples showed very strong FGFR2 mRNA expression (dense clusters of the signal visible under a 1× objective). Patients with very strong FGFR2 mRNA expression showed more homogeneous FGFR2 mRNA expression compared to patients with lower FGFGR2 mRNA expression. Gastric cancer patients with tumors that had an FGFR2 mRNA expression score of 4 had shorter RFS compared with score 0–3 patients.

Conclusion

RNAscope and DISH are suitable methods to evaluate FGFR2 status in gastric cancer. Formalin-fixed paraffin-embedded (FFPE) tissue slides allowed evaluation of the intratumor heterogeneity of these FGFR2 biomarkers.

FGFR3 mRNA overexpression defines a subset of oligometastatic colorectal cancers with worse prognosis

Oncotarget.

2018 Aug 14

Fromme JE, Schmitz K, Wachter A, Grzelinski M, Zielinski D, Koppel C, Conradi LC, Homayounfar K, Hugo T, Hugo S, Lukat L, Rüschoff J, Ströbel P, Ghadimi M, Beißbarth T, Reuter-Jessen K, Bleckmann A, Schildhaus HU.
PMID: 30181810 | DOI: 10.18632/oncotarget.25941

Abstract

OBJECTIVES:

Metastatic colorectal cancer (CRC) remains a leading cause of cancer related deaths. Patients with oligometastatic liver disease represent a clinical subgroup with heterogeneous course. Until now, biomarkers to characterize outcome and therapeutic options have not been fully established.

METHODS:

We investigated the prevalence of FGFR alterations in a total of 140 primary colorectal tumors and 63 liver metastases of 55 oligometastatic CRC patients. FGF receptors (FGFR1-4) and their ligands (FGF3, 4 and 19) were analyzed for gene amplifications and rearrangements as well as for RNA overexpression in situ. Results were correlated with clinico-pathologic data and molecular subtypes.

RESULTS:

Primary tumors showed FGFR1 (6.3%) and FGF3,4,19 (2.2%) amplifications as well as FGFR1 (10.1%), FGFR2 (5.5%) and FGFR3 (16.2%) overexpression. In metastases, we observed FGFR1 amplifications (4.8%) as well as FGFR1 (8.5%) and FGFR3 (14.9%) overexpression. Neither FGFR2-4 amplifications nor gene rearrangements were observed. FGFR3 overexpression was significantly associated with shorter overall survival in metastases (mOS 19.9 vs. 47.4 months, HR=3.14, p=0.0152), but not in primary CRC (HR=1.01, p=0.985). Although rare, also FGFR1 amplification was indicative of worse outcome (mOS 12.6 vs. 47.4 months, HR=8.83, p=0.00111).

CONCLUSIONS:

We provide the so far most comprehensive analysis of FGFR alterations in primary and metastatic CRC. We describe FGFR3 overexpression in 15% of CRC patients with oligometastatic liver disease as a prognosticator for poor outcome. Recently FGFR3 overexpression has been shown to be a potential therapeutic target. Therefore, we suggest focusing on this subgroup in upcoming clinical trials with FGFR-targeted therapies.

Expression profile of intestinal stem cell markers in colitis-associated carcinogenesis

Scientific Reports

2017 Jul 26

Kim HS, Lee C, Kim WH, Maeng YH, Jang BG.
PMID: 28747693 | DOI: 10.1038/s41598-017-06900-x

The intestinal epithelium has two distinct two stem cell populations, namely, crypt base columnar (CBC) cells and +4 cells. Several specific markers have been identified for each stem cell population. In this study, we examined the expression profiles of these markers in colitis-associated carcinogenesis (CAC) to investigate whether they can be used as biomarkers for the early detection of dysplasia. The expression of intestinal stem cell (ISC) markers was measured by real-time polymerase chain reaction during CAC that was induced by azoxymethane and dextran sodium sulfate treatment. CBC stem cell markers increased continuously with tumor development, whereas a +4 cell expression profile was not present. CBC stem cell population was suppressed in the acute colitis and then expanded to repopulate the crypts during the regeneration period. Notably, RNA in situ hybridization revealed that all dysplasia and cancer samples showed increased expression of CBC stem cell markers in more than one-third of the tumor height, whereas regenerative glands had CBC stem cell markers confined to the lower one-third of the crypt. These results suggest that CBC stem cell markers could be a useful tool for the early detection of colitis-induced tumors.

 

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?