Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, Wei XF, Han W, Wang H
PMID: 31999649 | DOI: 10.1172/jci.insight.133977
Free full text
In recent years, chimeric antigen receptor-modified T cell (CAR T cell) therapy has proven to be a promising approach against cancer. Nonetheless, this approach still faces multiple challenges in eliminating solid tumors, one of which being the immunosuppressive tumor microenvironment (TME). Here, we demonstrated that knocking out the endogenous TGF-? receptor II (TGFBR2) in CAR T cells with CRISPR/Cas9 technology could reduce the induced Treg conversion and prevent the exhaustion of CAR T ce lls. Meanwhile, TGFBR2-edited CAR T cells had better in vivo tumor elimination efficacy, both in cell line-derived xenograft and patient-derived xenograft solid tumor models, whether administered locally or systemically. In addition, the TGFBR2-edited CAR T cells could eliminate contralaterally reinoculated xenografts in mice effectively, with an increased proportion of memory subsets within circulating CAR T cells of central memory and effector memory subsets. In conclusion, we greatly improved the in vitro and in vivo function of CAR T cells in TGF-?-rich tumor environments by knocking out endogenous TGFBR2 and propose a potentially new method to improve the efficacy of CAR T cell therapy for treating solid tumors
Pathobiology. 2015 Jun 16;82(2):76-83.
Kwak Y, Nam SK, Seo AN, Kim DW, Kang SB, Kim WH, Lee HS.
PMID: 26088290
Abstract Objectives: Fibroblast growth factor receptor 1 (FGFR1) has been reported to be overexpressed in colorectal cancer (CRC) and suggested to be a therapeutic target. In this study, we investigated FGFR1 expression and amplification in CRC and its correlation with clinicopathologic parameters. Methods:FGFR1 dual-color fluorescence in situ hybridization and mRNA in situ hybridization were performed on tissue array blocks composed of 291 consecutive primary CRCs. Results: Of the 291 CRC cases, FGFR1 gene amplification was found in 11 (3.8%) cases, high FGFR1 polysomy in 4 (1.4%) cases, and FGFR1 gene copy number (GCN) gain (GCN >2) in 77 (26.5%) cases. FGFR1 GCN gain was significantly associated with left-sided location, lymph node metastasis, distant metastasis, and higher TNM stage (p < 0.05). FGFR1 GCN gain also correlated with poor patient survival (p = 0.015). FGFR1 mRNA overexpression (score 3-4) was present in 11.7% (34/291) of the patients and was significantly associated with FGFR1 GCN alteration (Pearson correlation coefficient, r = 0.463; p < 0.001). Conclusion:FGFR1 GCN gain was more frequently found (26.5%) than gene amplification (3.8%) and correlated with aggressive clinical behavior in consecutive CRC patients. FGFR1 GCN alteration was associated with a high FGFR1 mRNA level.
Cancer immunology research
Reschke, R;Shapiro, JW;Yu, J;Rouhani, SJ;Olson, DJ;Zha, Y;Gajewski, TF;
PMID: 35977003 | DOI: 10.1158/2326-6066.CIR-22-0362
Immune checkpoint blockade is therapeutically successful for many patients across multiple cancer types. However, immune-related adverse events (irAE) frequently occur and can sometimes be life threatening. It is critical to understand the immunologic mechanisms of irAEs with the goal of finding novel treatment targets. Herein, we report our analysis of tissues from patients with irAE dermatitis using multiparameter immunofluorescence (IF), spatial transcriptomics, and RNA in situ hybridization (RISH). Skin psoriasis cases were studied as a comparison, as a known Th17-driven disease, and colitis was investigated as a comparison. IF analysis revealed that CD4+ and CD8+ tissue-resident memory T (TRM) cells were preferentially expanded in the inflamed portion of skin in cutaneous irAEs compared with healthy skin controls. Spatial transcriptomics allowed us to focus on areas containing TRM cells to discern functional phenotype and revealed expression of Th1-associated genes in irAEs, compared with Th17-asociated genes in psoriasis. Expression of PD-1, CTLA-4, LAG-3, and other inhibitory receptors was observed in irAE cases. RISH technology combined with IF confirmed expression of IFNγ, CXCL9, CXCL10, and TNFα in irAE dermatitis, as well as IFNγ within TRM cells specifically. The Th1-skewed phenotype was confirmed in irAE colitis cases compared with healthy colon.
Digestion. 88(3):172–181.
Göke F, Göke A, von Mässenhausen A, Franzen A, Sharma R, Kirsten R, Böhm D, Kristiansen G, Stenzinger A, Wynes M, Hirsch FR, Weichert W, Heasley L, Buettner R, Perner S (2013).
PMID: 24135816 | DOI: 10.1159/000355018
BACKGROUND/AIMS:
Resembling a potential therapeutic drug target, fibroblast growth factor receptor 1 (FGFR1) amplification and expression was assessed in 515 human colorectal cancer (CRC) tissue samples, lymph node metastases and CRC cell lines.
METHODS:
FGFR1 amplification status was determined using fluorescence in situ hybridization. Additionally, we assessed protein levels employing Western blots and immunohistochemistry. The FGFR1 mRNA localization was analyzed using mRNA in situ hybridization. Functional studies employed the FGFR inhibitor NVP-BGJ398.
RESULTS:
Of 454 primary CRCs, 24 displayed FGFR1 amplification. 92/94 lymph node metastases presented the same amplification status as the primary tumor. Of 99 investigated tumors, 18 revealed membranous activated pFGFR1 protein. FGFR1 mRNA levels were independent of the amplification status or pFGFR1 protein occurrence. In vitro, a strong antiproliferative effect of NVP-BGJ398 could be detected in cell lines exhibiting high FGFR1 protein.
CONCLUSION:
FGFR1 is a potential therapeutic target in a subset of CRC. FGFR1 protein is likely to represent a central factor limiting the efficacy of FGFR inhibitors. The lack of correlation between its evaluation at genetic/mRNA level and its protein occurrence indicates that the assessment of the receptor at an immunohistochemical level most likely represents a suitable way to assess FGFR1 as a predictive biomarker for patient selection in future clinical trials.
Necchi A, Raggi D, Volpi CC, Giannatempo P, Colecchia M, Gloghini A.
PMID: 28855072 | DOI: 10.1016/j.euf.2017.08.002
Pan-fibroblast growth-factor receptor (FGFR) inhibitors hold promise in FGFR-altered patients, but such alterations are rare in advanced urothelial carcinoma. In order to assess whether we may increase the number of eligible patients by using different molecular techniques for detecting alterations, we pooled the results of the centralised FGFR mutation/translocation assays that were performed in Clinical Laboratory Improvement Amendments-certified laboratories within multiple phase 2 trials. At our centre, the same tissue blocks were used to analyse FGFR1-3 messenger RNA expression through messenger RNA in situ hybridisation (ISH; RNAscope 2.5 assay). From October 2016 to March 2017, 52 cases were analysed. Seventeen patients (32.7%) had an upper tract primary tumour. Ten patients (19.2%) had FGFR DNA alterations. Twenty-nine (55.8%) had positive ISH analysis: N=17 score 3, N=12 score 4. Of note, concordance between the two tests was obtained in seven out of 10 patients. Sixty percent of mutated patients had an upper tract primary tumour versus 31% of ISH-positive patients.
PATIENT SUMMARY:
We found three-fold higher frequency of fibroblast growth-factor receptor alterations at the RNA versus DNA level in advanced urothelial carcinoma, with a different distribution according to the method used and the site of the primary tumour. The evaluation of the therapeutic response to pan-fibroblast growth-factor receptor inhibitors according to the method of assessment is warranted.
Current oncology (Toronto, Ont.)
Boudin, L;Morvan, JB;Thariat, J;Métivier, D;Marcy, PY;Delarbre, D;
PMID: 36290887 | DOI: 10.3390/curroncol29100610
Anaplastic thyroid carcinoma (ATC) are highly aggressive malignant tumors with poor overall prognosis despite multimodal therapy. As ATC are extremely rare, no randomized controlled study has been published for metastatic disease. Thyrosine kinase inhibitors, especially lenvatinib and immune checkpoint inhibitors such as pembrolizumab, are emerging drugs for ATC. Few studies have reported the efficacity of pembrolizumab and lenvatinib association, resulting in its frequent off-label use. In this review, we discuss rationale efficacy and safety evidence for the association of lenvatinib and pembrolizumab in ATC. First, we discuss preclinical rationale for pembrolizumab monotherapy, lenvatinib monotherapy and synergistic action of pembrolizumab and lenvatinib in the metastatic setting. We also discuss clinical evidence for immunotherapy and pembrolizumab in ATC through the analysis of studies evaluating immunotherapy, lenvatinib and pembrolizumab lenvatinib association in ATC. In addition, we discuss the safety of this association and potential predictive biomarkers of efficiency.
Mol Cancer Res. 2014 Oct;12(10):1460-9.
Marek LA, Hinz TK, von Mässenhausen A, Olszewski KA, Kleczko EK, Boehm D, Weiser-Evans MC, Nemenoff RA, Hoffmann H, Warth A, Gozgit JM, Perner S, Heasley LE.
PMID: 25686826
Abstract Malignant pleural mesothelioma (MPM) is associated with asbestos exposure and is a cancer that has not been significantly affected by small molecule-based targeted therapeutics. Previously, we demonstrated the existence of functional subsets of lung cancer and head and neck squamous cell carcinoma (HNSCC) cell lines in which fibroblast growth factor receptor (FGFR) autocrine signaling functions as a nonmutated growth pathway. In a panel of pleural mesothelioma cell lines, FGFR1 and FGF2 were coexpressed in three of seven cell lines and were significantly associated with sensitivity to the FGFR-active tyrosine kinase inhibitor (TKI), ponatinib, both in vitro and in vivo using orthotopically propagated xenografts. Furthermore, RNAi-mediated silencing confirmed the requirement for FGFR1 in specific mesothelioma cells and sensitivity to the FGF ligand trap, FP-1039, validated the requirement for autocrine FGFs. None of the FGFR1-dependent mesothelioma cells exhibited increased FGFR1 gene copy number, based on a FISH assay, indicating that increased FGFR1 transcript and protein expression were not mediated by gene amplification. Elevated FGFR1 mRNA was detected in a subset of primary MPM clinical specimens and like MPM cells; none harbored increased FGFR1 gene copy number. These results indicate that autocrine signaling through FGFR1 represents a targetable therapeutic pathway in MPM and that biomarkers distinct from increased FGFR1 gene copy number such as FGFR1 mRNA would be required to identify patients with MPM bearing tumors driven by FGFR1 activity. IMPLICATIONS: FGFR1 is a viable therapeutic target in a subset of MPMs, but FGFR TKI-responsive tumors will need to be selected by a biomarker distinct from increased FGFR1 gene copy number, possibly FGFR1 mRNA or protein levels.
FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale
Frontiers in endocrinology
Adam, P;Kircher, S;Sbiera, I;Koehler, VF;Berg, E;Knösel, T;Sandner, B;Fenske, WK;Bläker, H;Smaxwil, C;Zielke, A;Sipos, B;Allelein, S;Schott, M;Dierks, C;Spitzweg, C;Fassnacht, M;Kroiss, M;
PMID: 34475850 | DOI: 10.3389/fendo.2021.712107
Treatment options for poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinoma are unsatisfactory and prognosis is generally poor. Lenvatinib (LEN), a multi-tyrosine kinase inhibitor targeting fibroblast growth factor receptors (FGFR) 1-4 is approved for advanced radioiodine refractory thyroid carcinoma, but response to single agent is poor in ATC. Recent reports of combining LEN with PD-1 inhibitor pembrolizumab (PEM) are promising.Primary ATC (n=93) and PDTC (n=47) tissue samples diagnosed 1997-2019 at five German tertiary care centers were assessed for PD-L1 expression by immunohistochemistry using Tumor Proportion Score (TPS). FGFR 1-4 mRNA was quantified in 31 ATC and 14 PDTC with RNAscope in-situ hybridization. Normal thyroid tissue (NT) and papillary thyroid carcinoma (PTC) served as controls. Disease specific survival (DSS) was the primary outcome variable.PD-L1 TPS≥50% was observed in 42% of ATC and 26% of PDTC specimens. Mean PD-L1 expression was significantly higher in ATC (TPS 30%) than in PDTC (5%; p<0.01) and NT (0%, p<0.001). 53% of PDTC samples had PD-L1 expression ≤5%. FGFR mRNA expression was generally low in all samples but combined FGFR1-4 expression was significantly higher in PDTC and ATC compared to NT (each p<0.001). No impact of PD-L1 and FGFR 1-4 expression was observed on DSS.High tumoral expression of PD-L1 in a large proportion of ATCs and a subgroup of PDTCs provides a rationale for immune checkpoint inhibition. FGFR expression is low thyroid tumor cells. The clinically observed synergism of PEM with LEN may be caused by immune modulation.
Strasser K, Birnleitner H, Beer A, Pils D, Gerner MC, Schmetterer KG, Bachleitner-Hofmann T, Stift A, Bergmann M, Oehler R.
PMID: - | DOI: 10.1080/2162402X.2018.1537693
T cells in colorectal cancer (CRC) are associated with improved survival. However, checkpoint immunotherapies antagonizing the suppression of these cells are ineffective in the great majority of patients. To better understand the immune cell regulation in CRC, we compared tumor-associated T lymphocytes and macrophages to the immune cell infiltrate of normal mucosa. Human colorectal tumor specimen and tumor-distant normal mucosa tissues of the same patients were collected. Phenotypes and functionality of tissue-derived T cells and macrophages were characterized using immunohistochemistry, RNA in situ hybridization, and multiparameter flow cytometry. CRC contained significantly higher numbers of potentially immunosuppressive CD39 and Helios-expressing regulatory T cells in comparison to normal mucosa. Surprisingly, we found a concomitant increase of pro-inflammatory IFNγ -producing T cells. PD-L1+ stromal cells were decreased in the tumor tissue. Macrophages in the tumor compared to tumor-distant normal tissue appear to have an altered phenotype, identified by HLA-DR, CD14, CX3CR1, and CD64, and tolerogenic CD206+macrophages are quantitatively reduced. The prognostic effect of these observed differences between distant mucosa and tumor tissue on the overall survival was examined using gene expression data of 298 CRC patients. The combined gene expression of increased FOXP3, IFNγ, CD14, and decreased CD206 correlated with a poor prognosis in CRC patients. These data reveal that the CRC microenvironment promotes the coexistence of seemingly antagonistic suppressive and pro-inflammatory immune responses and might provide an explanation why a blockade of the PD1/PD-L1 axis is ineffective in CRC. This should be taken into account when designing novel treatment strategies.
J Thorac Oncol. 2015 May 27.
Zhang L, Yu H, Badzio A, Boyle TA, Schildhaus HU, Lu X, Dziadziuszko R, Jassem J, Varella-Garcia M, Heasley LE, Kowalewski AA, Ellison K, Chen G, Zhou C, Hirsch FR.
PMID: 26016563 | DOI: 10.1080/15476286.2015.1053687
Introduction: Small-cell lung cancer (SCLC) accounts for 15% of all lung cancers and has been understudied for novel therapies. Signaling through fibroblast growth factors (FGF2, FGF9) and their high-affinity receptor has recently emerged as a contributing factor in the pathogenesis and progression of non-small-cell lung cancer. In this study, we evaluated fibroblast growth factor receptor 1 (FGFR1) and ligand expression in primary SCLC samples. Methods: FGFR1 protein expression, messenger RNA (mRNA) levels, and gene copy number were determined by immunohistochemistry (IHC), mRNA in situ hybridization, and silver in situ hybridization, respectively, in primary tumors from 90 patients with SCLC. Protein and mRNA expression of the FGF2 and FGF9 ligands were determined by IHC and mRNA in situ hybridization, respectively. In addition, a second cohort of 24 SCLC biopsy samples with known FGFR1 amplification by fluorescence in situ hybridization was assessed for FGFR1 protein expression by IHC. Spearman correlation analysis was performed to evaluate associations of FGFR1, FGF2 and FGF9 protein levels, respective mRNA levels, and FGFR1 gene copy number. Results: FGFR1 protein expression by IHC demonstrated a significant correlation with FGFR1 mRNA levels (p < 0.0001) and FGFR1 gene copy number (p = 0.03). The prevalence of FGFR1 mRNA positivity was 19.7%. FGFR1 mRNA expression correlated with both FGF2 (p = 0.0001) and FGF9 (p = 0.002) mRNA levels, as well as with FGF2 (p = 0.01) and FGF9 (p = 0.001) protein levels. There was no significant association between FGFR1 and ligands with clinical characteristics or prognosis. In the second cohort of specimens with known FGFR1 amplification by fluorescence in situ hybridization, 23 of 24 had adequate tumor by IHC, and 73.9% (17 of 23) were positive for FGFR1 protein expression. Conclusions: A subset of SCLCs is characterized by potentially activated FGF/FGFR1 pathways, as evidenced by positive FGF2, FGF9, and FGFR1 protein and/or mRNA expression. FGFR1 protein expression is correlated with FGFR1 mRNA levels and FGFR1 gene copy number. Combined analysis of FGFR1 and ligand expression may allow selection of patients with SCLC to FGFR1 inhibitor therapy.
Boxberg M, Leising L, Steiger K, Jesinghaus M, Alkhamas A, Mielke M, Pfarr N, Götz C, Wolff KD, Weichert W, Kolk A.
PMID: 30530592 | DOI: 10.4049/jimmunol.1800242
Immunotherapy shows promising results and revolutionizes treatment of oral squamous cell carcinoma (OSCC). The immunologic microenvironment might have prognostic/predictive implications. Morphologic immunologic parameters (inflammatory infiltrate, stromal content, and budding activity [BA] [potentially indicating epithelial–mesenchymal transition]) were evaluated in 66 human primary therapy-naive OSCCs. Intraepithelial/stromal tumor-infiltrating lymphocytes (TILs; CD3+/CD4+/CD8+/CD4+FOXP3+/IL-17A+) were quantified, and ratios were calculated. HLA class I in tumor cells was evaluated immunohistochemically. mRNA in situ hybridization to detect IFN-γ was performed. Analysis was performed within invasive front (IF) and tumor center (TCe). Decreased HLA expression was associated with low TIL density, pronounced stromal content, and high BA; IFN-γ in TILs was correlated with high-density TILs; and IFN-γ in tumor cells was correlated with absence of BA (p < 0.05). Heterogeneity of parameters (TCe/IF) was rare. Low density of stromal CD4+FOXP3+ TILs within TCe and IF was identified as an independent prognostic factor for poor overall, disease-specific, and disease-free survival (p ≤ 0.011). Refining prognostication in OSCC with high-density CD4+FOXP3+ infiltrate within TCe and/or IF, high FOXP3:CD4 ratio was significantly correlated with favorable outcome in this subgroup. Furthermore, high-stromal CD8:CD4 ratio was found to be an independent favorable prognostic factor. In summary, immunologic parameters were closely intertwined. Morphologic correlates of epithelial–mesenchymal transition were associated with downregulation of HLA and decreased inflammation. Heterogeneity was infrequent. Low-density stromal CD4+FOXP3+ infiltrate within TCe and IF was an independent poor prognostic factor. Stratification of cases with high-density CD4+FOXP3+ TILs by FOXP3:CD4 ratio enables refinement of prognostication of this subgroup. CD8:CD4 ratio was identified as an independent prognostic factor.
Clin Cancer Res. 2015 May 26.
Göke F, Franzen A, Hinz TK, Marek LA, Yoon P, Sharma R, Bode M, von Mässenhausen A, Lankat-Buttgereit B, Göke A, Golletz C, Kirsten R, Boehm D, Vogel W, Kleczko EK, Eagles J, Hirsch FR, Van Bremen T, Bootz F, Schröck A, Kim J, Tan AC, Jimeno A, Heasle
PMID: 26027736 | DOI: 10.1038/ncomms8222.
Background: FGFR1 copy number gain (CNG) occurs in head and neck squamous cell cancers (HNSCC) and is used for patient selection in FGFR-specific inhibitor clinical trials. This study explores FGFR1 mRNA and protein levels in HNSCC cell lines, primary tumors and patient-derived xenografts (PDXs) as predictors of sensitivity to the FGFR inhibitor, NVP-BGJ398. Methods: FGFR1 status, expression levels and BGJ398 sensitive growth were measured in 12 HNSCC cell lines. Primary HNSCCs (n=353) were assessed for FGFR1 CNG and mRNA levels and HNSCC TCGA data were interrogated as an independent sample set. HNSCC PDXs (n=39) were submitted to FGFR1 copy number detection and mRNA assays to identify putative FGFR1-dependent tumors. Results: Cell line sensitivity to BGJ398 is associated with FGFR1 mRNA and protein levels, not FGFR1 CNG. 31% of primary HNSCC tumors expressed FGFR1 mRNA, 18% exhibited FGFR1 CNG, 35% of amplified tumors were also positive for FGFR1 mRNA. This relationship was confirmed with the TCGA dataset. Using high FGFR1 mRNA for selection, 2 HNSCC PDXs were identified, one of which also exhibited FGFR1 CNG. The non-amplified tumor with high mRNA levels exhibited in vivo sensitivity to BGJ398. Conclusion: FGFR1 expression associates with BGJ398 sensitivity in HNSCC cell lines and predicts TKI sensitivity in PDXs. Our results support FGFR1 mRNA or protein expression, rather than FGFR1 CNG as a predictive biomarker for the response to FGFR inhibitors in a subset of patients suffering from HNSCC.