Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (11)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • (-) Remove Il-6 filter Il-6 (6)
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • (-) Remove ESR1 filter ESR1 (5)
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope Fluorescent Multiplex Assay (4) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent Assay (2) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter

Research area

  • (-) Remove Cancer filter Cancer (11)
  • Inflammation (1) Apply Inflammation filter
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (11) Apply Publications filter
TNF-α expression, risk factors, and inflammatory exposures in ovarian cancer: evidence for an inflammatory pathway of ovarian carcinogenesis?

Human Pathology

2016 Apr 08

Gupta M, Babic A, Beck AH, Terry K.
PMID: - | DOI: 10.1016/j.humpath.2016.03.006

Inflammatory cytokines, like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), are elevated in ovarian cancer. Differences in cytokine expression by histologic subytpe or ovarian cancer risk factors can provide useful insight into ovarian cancer risk and etiology. We used ribonucleic acid (RNA) in-situ hybridization to assess TNF-α and IL-6 expression on tissue microarray slides from 78 epithelial ovarian carcinomas (51 serous, 12 endometrioid, 7 clear cell, 2 mucinous, 6 other) from a population-based case control study. Cytokine expression was scored semi-quantitatively and odds ratios (OR) and 95% confidence intervals (CI) were calculated using polytomous logistic regression. TNF-α was expressed in 46% of the tumors while sparse IL-6 expression was seen only 18% of the tumors. For both markers, expression was most common in high grade serous carcinomas followed by endometrioid carcinomas. Parity was associated with a reduced risk of TNF-α positive (OR = 0.3, 95% CI: 0.1-0.7 for 3 or more children versus none) but not TNF-α negative tumors (p-heterogeneity = 0.02). In contrast, current smoking was associated with a nearly three fold increase in risk of TNF-α negative (OR = 2.8, 95% CI: 1.2, 6.6) but not TNF-α positive tumors (p-heterogeneity = 0.06). Our data suggests that TNF-α expression in ovarian carcinoma varies by histologic subtype and provides some support for the role of inflammation in ovarian carcinogenesis. The novel associations detected in our study need to be validated in a larger cohort of patients in future studies.

IL-33 overexpression reflects less aggressive tumour features in large-duct type cholangiocarcinomas.

Histopathology.

2018 Apr 19

Sawada R, Ku Y, Akita M, Otani K, Fujikura K, Itoh T, Ajiki T, Fukumoto T, Kakeji Y, Zen Y.
PMID: 29675965 | DOI: 10.1111/his.13633

Abstract

BACKGROUND & AIMS:

The present study aimed to elucidate the clinicopathological significance of IL-6 and IL-33 expression in intrahepatic cholangiocarcinomas (iCCAs) and perihilar cholangiocarcinomas (pCCAs).

METHODS:

IL-6 and IL-33 mRNA expression was examined in iCCAs (n=55) and pCCAs (n=32) using quantitative real-time PCR and a highly sensitive in situ hybridization protocol (RNAscope™ ), and expression values were correlated with clinicopathological features. According to a recently proposed classification scheme, iCCAs were separated into small- (n=33) and large-duct types (n=22).

RESULTS:

IL-6 and IL-33 expression levels were higher in large-duct iCCAs and pCCAs than in small-duct iCCAs, with a positive correlation between the values of these cytokines. In double in situ hybridization/immunostaining, IL-6 mRNA was expressed in actin-positive (myo)fibroblasts, while IL-33 was mainly produced by CD31-positive endothelial cells. Based on the average expression value as a cut-off point, cases were classified as IL-6high and IL-6low or IL-33high and IL-33low . In the combined cohort of large-duct iCCAs and pCCAs, IL-6high and IL-6low cholangiocarcinomas shared many features, while IL-33high cases had less aggressive characteristics than IL-33low cases as evidenced by lower tumour marker concentrations, smaller tumour sizes, less common vascular invasion, lower pT stages, and higher lymphocyte-to-monocyte ratios in blood. KRAS mutations were slightly less common in IL-33high cases than in IL-33low cancers (9% vs 29%; p=0.061). The strong expression of IL-33 in tissue appeared to be an independent favourable prognostic factor.

CONCLUSIONS:

IL-33high cholangiocarcinomas may represent a unique, less aggressive carcinogenetic process of the large bile ducts.

Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence

Sci Transl Med.

2016 Apr 13

Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, Wang K, Sánchez V, Dean PT, Combs SE, Hicks D, Pinto JA, Landis MD, Doimi FD, Yelensky R, Miller VA, Stephens PJ, Rimm DL, Gómez H, Chang JC, Sanders ME, Cook RS, Arteaga CL.
PMID: 27075627 | DOI: 10.1126/scitranslmed.aad3001

Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC withoutJAK2amplification. Detection ofJAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates ofJAK2amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available,JAK2amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines withJAK2copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore,JAK2amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.

Lymph/angiogenesis contribute to sex differences in lung cancer through ERalpha signalling.

Endocr Relat Cancer.

2018 Nov 01

Dubois C, Rocks N, Blacher S, Primac I, Gallez A, García-Caballero M, Gérard C, Brouchet L, Noel A, Lenfant F, Cataldo D, Péqueux C.
PMID: 30444717 | DOI: 10.1530/ERC-18-0328

Estrogen signalling pathways are emerging targets for lung cancer therapy. Unravelling the contribution of estrogens in lung cancer development is a pre-requisite to support the development of sex-based treatments and to identify patients who could potentially benefit from anti-estrogen treatments. In this study, we highlight the contribution of lymphatic and blood endothelia in the sex-dependent modulation of lung cancer. The orthotopic graft of syngeneic lung cancer cells into immunocompetent mice showed that lung tumours grew faster in female mice than in males. Moreover, estradiol (E2) promoted tumour development in female mice and increased lymph/angiogenesis and levels of VEGFA and bFGF in lung tumours of females through an estrogen receptor (ER) alpha-dependent pathway. Furthermore, while treatment with ERbeta antagonist was inefficient, ERalpha antagonist (MPP) and tamoxifen decreased lung tumour volumes, altered blood and lymphatic vasculature and reduced VEGFA and bFGF levels in females, but not in males. Finally, the quantification of lymphatic and blood vasculature of lung adenocarcinoma biopsies from patients aged between 35 to 55 years old revealed more extensive lymphangiogenesis and angiogenesis in tumour samples issued from women than from men. In conclusion, our findings highlight an E2/ERalpha-dependent modulation of lymphatic and blood vascular components of lung tumour microenvironment. Our study has potential clinical implication in a personalised medicine perspective by pointing to the importance of estrogen status or supplementation on lung cancer development that should be considered to adapt therapeutic strategies.

MicroRNA-9 promotion of interleukin-6 expression by inhibiting monocyte chemoattractant protein-induced protein 1 expression in interleukin-1β-stimulated human chondrocytes.

Arthritis Rheumatol. 2015 Apr 27.

Makki MS, Haseeb A, Haqqi TM.
PMID: 25917063 | DOI: 10.1002/art.39173

Abstract OBJECTIVE: Enhanced IL-6 expression plays an important role in the pathogenesis of osteoarthritis (OA). MCPIP1 is a novel post-transcriptional regulator of IL-6 expression and is targeted by miR-9. We investigated the MCPIP1 expression in OA cartilage and explored whether targeting of MCPIP1 by miR-9 contributes to enhanced IL-6 expression in OA. METHODS: Gene and protein expression in IL-1β-stimulated human OA chondrocytes/cartilage was determined by TaqMan assays and immunoblotting respectively. MCPIP1 and IL-6 mRNA expression at single cell level was analyzed using RNAScopeTM . MCPIP1 protein interaction with IL-6 mRNA was investigated using RNA immunoprecipitation (RIP). Transient transfections were used for siRNA mediated knockdown and overexpression of MCPIP1, its RNAse defective mutant, miR-9 or antagomir. Role of signaling pathways was evaluated using small molecule inhibitors. Binding of miR-9 with the "seed sequence" in the 3'UTR of MCPIP1 mRNA was investigated using a luciferase reporter assay. RESULTS: MCPIP1 mRNA expression was low but expression of miR-9 and IL-6 was high in the damaged OA cartilage. In IL-1β-stimulated OA chondrocytes expression of miR-9 and MCPIP1 was mutually exclusive and increase in miR-9 expression level correlated with reduced MCPIP1 expression and enhanced IL-6 expression. MCPIP1 protein directly binds with IL-6 mRNA and over-expression of wild type MCPIP1 destabilized the IL-6 mRNA. MCPIP1 expression was altered by overexpression or inhibition of miR-9. Transfection with miR-9 mimics inhibited the reporter activity and mutation of the "seed sequence" abolished the repression of reporter activity. CONCLUSIONS: These studies implicate miR-9-mediated suppression of MCPIP1 in OA pathogenesis via upregulation of IL-6 expression in IL-1β-stimulated human OA chondrocytes. This article is protected by copyright. All rights reserved.
Bacterial Prostatitis Enhances 2-amino-1-methyl-6-phenylimidazo[4,5-β]pyridine (PhIP)-Induced Cancer at Multiple Sites.

Cancer Prev Res (Phila). 2015 May 19.

Sfanos KS, Canene-Adams K, Hempel H, Yu SH, Simons B, Schaeffer A, Schaeffer E, Nelson WG, De Marzo AM.
PMID: 10.1016/j.jpurol.2015.04.018

Dietary carcinogens, such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and chronic inflammation have each been implicated as etiological agents in prostate cancer. We hypothesized that bacterial prostatitis would accelerate PhIP-induced pre-invasive lesions in the rat prostate. Male Fischer 344 rats were assigned into 4 groups: Control (untreated), PhIP (200 ppm in the diet for 20 weeks), E. coli (prostatic inoculation in week 10), or PhIP+E. coli. Study animals were monitored for a total of 52 weeks and were euthanized as necessary based on strict criteria for health status and tumor burden. Animals treated with E. coli initially developed acute and chronic inflammation in all lobes of the prostate, whereas inflammation was observed predominantly in the ventral lobe at time of death. PhIP+E. coli-treated animals exhibited a marked decrease in survival compared to PhIP-alone treated animals as a result of an increase in the number of invasive cancers that developed at multiple sites including the skin, small intestine, and Zymbal's gland. Despite their earlier mortality, PhIP+E. coli-treated animals developed an increased average number of precancerous lesions within the prostate compared to PhIP-treated animals, with a significantly increased Ki-67 index. Multiplexed serum cytokine analysis indicated an increase in the level of circulating IL-6 and IL-12 in PhIP+E. coli-treated animals. Elevated serum IL-6 levels correlated with the development of precancerous lesions within the prostate. These results suggest that bacterial infections and dietary carcinogens - two conceivably preventable cancer risk factors - may synergistically promote tumorigenesis.
Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells

Sci Rep.

2017 Sep 26

Ogawa H, Koyanagi-Aoi M, Otani K, Zen Y, Maniwa Y, Aoi T.
PMID: 28951614 | DOI: 10.1038/s41598-017-12017-y

In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them "lung cancer organoids". We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.

Quantitative in situ measurement of estrogen receptor mRNA predicts response to tamoxifen.

PLoS One, 7(5):e36559.

Bordeaux JM, Cheng H, Welsh AW, Haffty BG, Lannin DR, Wu X, Su N, Ma XJ, Luo Y, Rimm DL. (2012).
PMID: 22606272 | DOI: 10.1371/journal.pone.0036559.

PURPOSE: Quantification of mRNA has historically been done by reverse transcription polymerase chain reaction (RT-PCR). Recently, a robust method of detection of mRNA utilizing in situ hybridization has been described that is linear and shows high specificity with low background. Here we describe the use of the AQUA method of quantitative immunofluorescence (QIF) for measuring mRNA in situ using ESR1 (the estrogen receptor alpha gene) in breast cancer to determine its predictive value compared to Estrogen Receptor α (ER) protein. METHODS: Messenger RNA for ER (ESR1) and Ubiquitin C (UbC) were visualized using RNAscope probes and levels were quantified by quantitative in situ hybridization (qISH) on two Yale breast cancer cohorts on tissue microarrays. ESR1 levels were compared to ER protein levels measured by QIF using the SP1 antibody. RESULTS: ESR1 mRNA is reproducibly and specifically measurable by qISH on tissue collected from 1993 or later. ESR1 levels were correlated to ER protein levels in a non-linear manner on two Yale cohorts. High levels of ESR1 were found to be predictive of response to tamoxifin. CONCLUSION: Quantification of mRNA using qISH may allow assessment of large cohorts with minimal formalin fixed, paraffin embedded tissue. Exploratory data using this method suggests that measurement of ESR1 mRNA levels may be predictive of response to endocrine therapy in a manner that is different from the predictive value of ER.
Pin1 modulates ERα levels in breast cancer through inhibition of phosphorylation-dependent ubiquitination and degradation.

Oncogene. 2014 Mar 13;33(11):1438-47.

Rajbhandari P, Schalper KA, Solodin NM, Ellison-Zelski SJ, Ping Lu K, Rimm DL, Alarid ET (2013).
PMID: 23542176 | DOI: 10.1038/onc.2013.78.

Estrogen receptor-alpha (ERα) is an important biomarker used to classify and direct therapy decisions in breast cancer (BC). Both ERα protein and its transcript, ESR1, are used to predict response to tamoxifen therapy, yet certain tumors have discordant levels of ERα protein and ESR1, which is currently unexplained. Cellular ERα protein levels can be controlled post-translationally by the ubiquitin-proteasome pathway through a mechanism that depends on phosphorylation at residue S118. Phospho-S118 (pS118-ERα) is a substrate for the peptidyl prolyl isomerase, Pin1, which mediates cis-trans isomerization of the pS118-P119 bond to enhance ERα transcriptional function. Here, we demonstrate that Pin1 can increase ERα protein without affecting ESR1 transcript levels by inhibiting proteasome-dependent receptor degradation. Pin1 disrupts ERα ubiquitination by interfering with receptor interactions with the E3 ligase, E6AP, which also is shown to bind pS118-ERα. Quantitative in situ assessments of ERα protein, ESR1, and Pin1 in human tumors from a retrospective cohort show that Pin1 levels correlate with ERα protein but not to ESR1 levels. These data show that ERα protein is post-translationally regulated by Pin1 in a proportion of breast carcinomas. As Pin1 impacts both ERα protein levels and transactivation function, these data implicate Pin1 as a potential surrogate marker for predicting outcome of ERα-positive BC.
Estrogen Receptor-α Quantification in Breast Cancer: Concordance Between Immunohistochemical Assays and mRNA-In Situ Hybridization for ESR1 Gene.

Appl Immunohistochem Mol Morphol.

2019 Mar 27

Thomsen C, Nielsen S, Nielsen BS, Pedersen SH, Vyberg M.
PMID: 30920963 | DOI: 10.1097/PAI.0000000000000760

Immunohistochemical (IHC) quantification of estrogen receptor-α (ER) is used for assessment of treatment regimen in breast cancer. Different ER IHC assays may produce diverging results, because of different antibody clones, protocols, and stainer platforms. Objective tissue-based techniques to assess sensitivity and specificity of IHC assays are therefore needed. We tested the usability of ER mRNA-in situ hybridization (mRNA-ISH) in comparison with assays based on clones SP1 and 6F11. We selected 56 archival specimens according to their reported ER IHC positivity, representing a wide spectrum from negative to strongly positive cases. The specimens were used to prepare 4 TMAs with 112 cores. Serial sections of each TMA were stained for ER and pan-cytokeratin (PCK) by IHC and ESR1 (ER gene) by mRNA-ISH. Digital image analysis (DIA) was used to determine ER IHC H-score. ESR1 mRNA-ISH was scored both manually and by DIA. DIA showed a nonlinear correlation between IHC and ESR1 mRNA-ISH with R-values of 0.80 and 0.78 for the ER antibody clones SP1 and 6F11, respectively. Comparison of manual mRNA-ISH scoring categories and SP1 and 6F11 IHC H-scores showed a highly significant relationship (P<0.001). In conclusion, the study showed good correlation between mRNA-ISH and IHC, suggesting that mRNA-ISH can be a valuable tool in the assessment of the sensitivity and specificity of ER IHC assays.

Single-Cell Transcriptome Analysis Reveals Estrogen Signaling Coordinately Augments One-Carbon, Polyamine, and Purine Synthesis in Breast Cancer.

Cell Rep.

2018 Nov 20

Zhu D, Zhao Z, Cui G, Chang S, Hu L, See YX, Lim MGL, Guo D, Chen X, Robson P, Luo Y, Cheung E.
PMID: 30463022 | DOI: 10.1016/j.celrep.2018.10.093

Estrogen drives breast cancer (BCa) progression by directly activating estrogen receptor α (ERα). However, because of the stochastic nature of gene transcription, it is important to study the estrogen signaling pathway at the single-cell level to fully understand how ERα regulates transcription. Here, we performed single-cell transcriptome analysis on ERα-positive BCa cells following 17β-estradiol stimulation and reconstructed the dynamic estrogen-responsive transcriptional network from discrete time points into a pseudotemporal continuum. Notably, differentially expressed genes show an estrogen-stimulated metabolic switch that favors biosynthesis but reduces estrogen degradation. Moreover, folate-mediated one-carbon metabolism is reprogrammed through the mitochondrial folate pathway and polyamine and purine synthesis are upregulated coordinately. Finally, we show AZIN1 and PPAT are direct ERα targets that are essential for BCa cell survival and growth. In summary, our study highlights the dynamic transcriptional heterogeneity in ERα-positive BCa cells upon estrogen stimulation and uncovers a mechanism of estrogen-mediated metabolic switch.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?