Maynard, JP;Godwin, TN;Lu, J;Vidal, I;Lotan, TL;De Marzo, AM;Joshu, CE;Sfanos, KS;
PMID: 35971807 | DOI: 10.1002/pros.24424
Black men are two to three times more likely to die from prostate cancer (PCa) than White men. This disparity is due in part to discrepancies in socioeconomic status and access to quality care. Studies also suggest that differences in the prevalence of innate immune cells and heightened function in the tumor microenvironment of Black men may promote PCa aggressiveness.We evaluated the spatial localization of and quantified CD66ce+ neutrophils by immunohistochemistry and CD68+ (pan), CD80+ (M1), and CD163+ (M2) macrophages by RNA in situ hybridization on formalin-fixed paraffin-embedded tissues from organ donor "normal" prostate (n = 9) and radical prostatectomy (n = 38) tissues from Black and White men. Neutrophils were quantified in PCa and matched benign tissues in tissue microarray (TMA) sets comprised of 560 White and 371 Black men. Likewise, macrophages were quantified in TMA sets comprised of tissues from 60 White and 120 Black men. The phosphatase and tensin homolog (PTEN) and ETS transcription factor ERG (ERG) expression status of each TMA PCa case was assessed via immunohistochemistry. Finally, neutrophils and macrophage subsets were assessed in a TMA set comprised of distant metastatic PCa tissues collected at autopsy (n = 6) sampled across multiple sites.CD66ce+ neutrophils were minimal in normal prostates, but were increased in PCa compared to benign tissues, in low grade compared to higher grade PCa, in PCa tissues from White compared to Black men, and in PCa with PTEN loss or ERG positivity. CD163+ macrophages were the predominant macrophage subset in normal organ donor prostate tissues from both Black and White men and were significantly more abundant in organ donor compared to prostatectomy PCa tissues. CD68,+ CD80,+ and CD163+ macrophages were significantly increased in cancer compared to benign tissues and in cancers with ERG positivity. CD68+ and CD163+ macrophages were increased in higher grade cancers compared to low grade cancer and CD80 expression was significantly higher in benign prostatectomy tissues from Black compared to White men.Innate immune cell infiltration is increased in the prostate tumor microenvironment of both Black and White men, however the composition of innate immune cell infiltration may vary between races.
J Ovarian Res. 2015 May 14;8(1):29
Abstract BACKGROUND: Folate receptor alpha (FOLR1/FRA) is expressed in a number of epithelial cancers and in particular epithelial ovarian cancer (EOC), especially of the serous histotype. Recent studies have shown that EOC originates from the fallopian tube fimbriae rather than from epithelial cells lining the ovary. We have previously shown by immunohistochemistry a strong correlation between FRA expression in EOC and normal and fallopian adenocarcinoma. Folate receptor beta (FOLR2/FRB) has been described to be expressed by macrophages both in inflammatory disorders and certain epithelial cancers. Given the high sequence identity of these two folate receptor family members we sought to investigate the architectural and cell-specific expression of these two receptors in gynecologic tissues. METHODS: RNA scope, a novel chromogenic in situ hybridization assay tool, was used to examine expression of the alpha (FOLR1) and beta (FOLR2) isoforms of folate receptor relative to each other as well as to the macrophage markers CD11b and CD68, in samples of normal fallopian tube and fallopian adenocarcinoma as well as normal ovary and EOC. RESULTS: We demonstrated expression of both FOLR1 and FOLR2 in EOC, normal fallopian tube and fallopian adenocarcinoma tissue while very little expression of either marker was observed in normal ovary. Furthermore, FOLR2 was shown to be expressed almost exclusively in macrophages, of both the M1 and M2 lineages, as determined by co-expression of CD11b and/or CD68, with little or no expression in epithelial cells. CONCLUSIONS: These findings further substantiate the hypothesis that the cell of origin of EOC is tubal epithelium and that the beta isoform of folate receptor is primarily restricted to macrophages. Further, macrophages expressing FOLR2 may represent tumor associated or infiltrating macrophages (TAMs) in epithelial cancers.
Lecker, LSM;Berlato, C;Maniati, E;Delaine-Smith, R;Pearce, OMT;Heath, O;Nichols, SJ;Trevisan, C;Novak, M;McDermott, J;Brenton, JD;Cutillas, PR;Rajeeve, V;Hennino, A;Drapkin, R;Loessner, D;Balkwill, FR;
PMID: 34561272 | DOI: 10.1158/0008-5472.CAN-21-0536
The tumor microenvironment evolves during malignant progression, with major changes in nonmalignant cells, cytokine networks, and the extracellular matrix (ECM). In this study, we aimed to understand how the ECM changes during neoplastic transformation of serous tubal intraepithelial carcinoma lesions (STIC) into high-grade serous ovarian cancers (HGSOC). Analysis of the mechanical properties of human fallopian tubes (FT) and ovaries revealed that normal FT and fimbria had a lower tissue modulus, a measure of stiffness, than normal or diseased ovaries. Proteomic analysis of the matrisome fraction between FT, fimbria, and ovaries showed significant differences in the ECM protein TGF beta induced (TGFBI, also known as βig-h3). STIC lesions in the fimbria expressed high levels of TGFBI, which was predominantly produced by CD163-positive macrophages proximal to STIC epithelial cells. In vitro stimulation of macrophages with TGFβ and IL4 induced secretion of TGFBI, whereas IFNγ/LPS downregulated macrophage TGFBI expression. Immortalized FT secretory epithelial cells carrying clinically relevant TP53 mutations stimulated macrophages to secrete TGFBI and upregulated integrin αvβ3, a putative TGFBI receptor. Transcriptomic HGSOC datasets showed a significant correlation between TGFBI expression and alternatively activated macrophage signatures. Fibroblasts in HGSOC metastases expressed TGFBI and stimulated macrophage TGFBI production in vitro. Treatment of orthotopic mouse HGSOC tumors with an anti-TGFBI antibody reduced peritoneal tumor size, increased tumor monocytes, and activated β3-expressing unconventional T cells. In conclusion, TGFBI may favor an immunosuppressive microenvironment in STICs that persists in advanced HGSOC. Furthermore, TGFBI may be an effector of the tumor-promoting actions of TGFβ and a potential therapeutic target. SIGNIFICANCE: Analysis of ECM changes during neoplastic transformation reveals a role for TGFBI secreted by macrophages in immunosuppression in early ovarian cancer.
Journal for immunotherapy of cancer
Michels, KR;Sheih, A;Hernandez, SA;Brandes, AH;Parrilla, D;Irwin, B;Perez, AM;Ting, HA;Nicolai, CJ;Gervascio, T;Shin, S;Pankau, MD;Muhonen, M;Freeman, J;Gould, S;Getto, R;Larson, RP;Ryu, BY;Scharenberg, AM;Sullivan, AM;Green, S;
PMID: 36918221 | DOI: 10.1136/jitc-2022-006292
Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformational outcomes in the treatment of B-cell malignancies, but their widespread use is hindered by technical and logistical challenges associated with ex vivo cell manufacturing. To overcome these challenges, we developed VivoVec, a lentiviral vector-based platform for in vivo engineering of T cells. UB-VV100, a VivoVec clinical candidate for the treatment of B-cell malignancies, displays an anti-CD3 single-chain variable fragment (scFv) on the surface and delivers a genetic payload that encodes a second-generation CD19-targeted CAR along with a rapamycin-activated cytokine receptor (RACR) system designed to overcome the need for lymphodepleting chemotherapy in supporting successful CAR T-cell expansion and persistence. In the presence of exogenous rapamycin, non-transduced immune cells are suppressed, while the RACR system in transduced cells converts rapamycin binding to an interleukin (IL)-2/IL-15 signal to promote proliferation.UB-VV100 was administered to peripheral blood mononuclear cells (PBMCs) from healthy donors and from patients with B-cell malignancy without additional stimulation. Cultures were assessed for CAR T-cell transduction and function. Biodistribution was evaluated in CD34-humanized mice and in canines. In vivo efficacy was evaluated against normal B cells in CD34-humanized mice and against systemic tumor xenografts in PBMC-humanized mice.In vitro, administration of UB-VV100 resulted in dose-dependent and anti-CD3 scFv-dependent T-cell activation and CAR T-cell transduction. The resulting CAR T cells exhibited selective expansion in rapamycin and antigen-dependent activity against malignant B-cell targets. In humanized mouse and canine studies, UB-VV100 demonstrated a favorable biodistribution profile, with transduction events limited to the immune compartment after intranodal or intraperitoneal administration. Administration of UB-VV100 to humanized mice engrafted with B-cell tumors resulted in CAR T-cell transduction, expansion, and elimination of systemic malignancy.These findings demonstrate that UB-VV100 generates functional CAR T cells in vivo, which could expand patient access to CAR T technology in both hematological and solid tumors without the need for ex vivo cell manufacturing.
Tamma R, Annese T, Ruggieri S, Marzullo A, Nico B, Ribatti D.
PMID: 29761299 | DOI: 10.1007/s10735-018-9777-0
Gastric cancer is the fifth most common cancer and third leading cause of cancer-related death worldwide. Several studies on angiogenic blocking agents in gastric cancer revealing promising results by the use of monoclonal antibodies against VEGFA or its receptor VEGFR2 or against VEGFA activating pathway. The validation of biomarkers useful to better organize the clinical trials involving anti-angiogenic therapies is crucial. Molecular markers such as RNA are increasingly used for cancer diagnosis, prognosis, and therapy guidance as in the case of the targeted therapies concerning the inhibition of angiogenesis. The aim of this study is to set the conditions for evaluating the expression of VEGFA and VEGFR2 in gastric cancer specimens and in healthy gastric mucosa by the use of RNAscope, a novel RNA in situ hybridization (ISH) method that allows the visualization of a specific gene expression in individual cells. We found the increased expression of VEGFA in the tubular glands and VEGFR2 in the endothelium of gastric cancer samples mainly in the T2, T3 and T4 stages of tumor progression as compared to the healthy controls. These results obtained by the application of this highly sensitive method for oligonucleotide detection the role of angiogenesis in gastric cancer progression already highlighted by conventional immunohistochemical methods, and offer significant promise as a new platform for developing and implementing RNA-based molecular diagnostics also in the conditions in which immunohistochemistry is not applicable.
Caliò A, Brunelli M, Segala D, Pedron S, Doglioni C, Argani P, Martignoni G.
PMID: 30206412 | DOI: 10.1038/s41379-018-0128-1
Amplification of vascular endothelial growth factor A (VEGFA) has been recently reported in TFEB-amplified renal cell carcinomas regardless the level of TFEB amplification. We sought to determine VEGFA amplification by fluorescent in situ hybridization (FISH) and VEGFA mRNA expression by in situ hybridization (RNAscope 2.5) in a series of 10 renal cell carcinomas with TFEB gene alterations, either amplification and/or rearrangement (t(6;11) renal cell carcinoma). TFEB gene rearrangement was demonstrated in eight cases, whereas the remaining two cases showed a high level of TFEB (> 10 copies of fluorescent signals) gene amplification without evidence of rearrangement. Among the eight t(6;11) renal cell carcinomas (TFEB-rearranged cases), one case displayed a high level of TFEB gene amplification and two showed increased TFEB gene copy number (3-4 copies of fluorescent signals). Those three cases behaved aggressively. By FISH, VEGFA was amplified in all three cases with TFEB amplification and increased VEGFA gene copy number was observed in the two aggressive cases t(6;11) renal cell carcinomas with an overlapping increased number of TFEB fluorescent signals. Overall, VEGFA mRNA expression was observed in 8 of 10 cases (80%); of these 8 cases, 3 cases showed high-level TFEB amplification, one case showed TFEB rearrangement with increased TFEB gene copy number, whereas four showed TFEB gene rearrangement without increased copy number. In summary, VEGFA amplification/increased gene copy number and VEGFA mRNA expression occur in TFEB-amplified renal cell carcinoma, but also in a subset of t(6;11) renal cell carcinoma demonstrating aggressive behavior, and in unamplified conventional t(6;11) renal cell carcinoma suggesting VEGFA as potential therapeutic target in these neoplasms even in the absence of TFEB amplification. We finally propose that all the renal tumors showing morphological characteristics suggesting t(6;11) renal cell carcinoma and all unclassified renal cell carcinomas, either high grade or low grade, should immunohistochemically be evaluated for cathepsin K and/or Melan-A and if one of them is positive, tested for TFEB gene alteration and VEGFA gene amplification.
Different spatial distribution of inflammatory cells in the tumor microenvironment of ABC and GBC subgroups of diffuse large B cell lymphoma
Clinical and experimental medicine
Guidolin, D;Tamma, R;Annese, T;Tortorella, C;Ingravallo, G;Gaudio, F;Perrone, T;Musto, P;Specchia, G;Ribatti, D;
PMID: 33959827 | DOI: 10.1007/s10238-021-00716-w
Diffuse Large B-Cell Lymphoma (DLBCL) presents a high clinical and biological heterogeneity, and the tumor microenvironment chracteristics are important in its progression. The aim of this study was to evaluate tumor T, B cells, macrophages and mast cells distribution in GBC and ABC DLBCL subgroups through a set of morphometric parameters allowing to provide a quantitative evaluation of the morphological features of the spatial patterns generated by these inflammatory cells. Histological ABC and GCB samples were immunostained for CD4, CD8, CD68, CD 163, and tryptase in order to determine both percentage and position of positive cells in the tissue characterizing their spatial distribution. The results evidenced that cell patterns generated by CD4-, CD8-, CD68-, CD163- and tryptase-positive cell profiles exhibited a significantly higher uniformity index in ABC than in GCB subgroup. The positive-cell distributions appeared clustered in tissues from GCB, while in tissues from ABC such a feature was lower or absent. The combinations of spatial statistics-derived parameters can lead to better predictions of tumor cell infiltration than any classical morphometric method providing a more accurate description of the functional status of the tumor, useful for patient prognosis.
Ni C, Ma P, Qu L, Wu F, Hao J, Wang R, Lu Y, Yang W, Erben U, Qin Z.
PMID: 28418194 | DOI: 10.1002/path.4907
Angiostasis mediated by IFNγ is a key mechanism of anti-tumor immunity; however, the effect of IFNγ on host VEGFA-expressing cells during tumor progression is still elusive. Here, we developed transgenic mice with IFNγ receptor (IFNγR) expression under control of the Vegfa promoter (V-γR). In these mice, the IFNγ responsiveness of VEGFA -expressing cells led to a dramatic growth suppression of transplanted lung carcinoma cells. Surprisingly, increased mortality and tumor metastasis were observed in the tumor-bearing V-γR mice, in comparison to the control wild type and IFNγR-deficient mice. Further study showed that perivascular cells were VEGFA-expressing cells and potential IFNγ targets. In vivo, tumor vascular perfusion and pericyte association with blood vessels were massively disrupted in V-γR mice. In vitro, IFNγ inhibited TGF-β-signaling through upregulating SMAD7 and therefore, down-regulated N-cadherin expression in pericytes. Importantly, IFNγ neutralization in vivo using a monoclonal antibody reduced tumor metastasis. Together, the results suggest that IFNγR-mediated dissociation of perivascular cells from blood vessels contributes to the acceleration of tumor metastasis. Thus the inhibition of tumor growth via IFNγ-induced angiostasis might also accelerate tumor metastasis.
Tuong, ZK;Loudon, KW;Berry, B;Richoz, N;Jones, J;Tan, X;Nguyen, Q;George, A;Hori, S;Field, S;Lynch, AG;Kania, K;Coupland, P;Babbage, A;Grenfell, R;Barrett, T;Warren, AY;Gnanapragasam, V;Massie, C;Clatworthy, MR;
PMID: 34936871 | DOI: 10.1016/j.celrep.2021.110132
The prostate gland produces prostatic fluid, high in zinc and citrate and essential for the maintenance of spermatozoa. Prostate cancer is a common condition with limited treatment efficacy in castration-resistant metastatic disease, including with immune checkpoint inhibitors. Using single-cell RNA-sequencing to perform an unbiased assessment of the cellular landscape of human prostate, we identify a subset of tumor-enriched androgen receptor-negative luminal epithelial cells with increased expression of cancer-associated genes. We also find a variety of innate and adaptive immune cells in normal prostate that were transcriptionally perturbed in prostate cancer. An exception is a prostate-specific, zinc transporter-expressing macrophage population (MAC-MT) that contributes to tissue zinc accumulation in homeostasis but shows enhanced inflammatory gene expression in tumors, including T cell-recruiting chemokines. Remarkably, enrichment of the MAC-MT signature in cancer biopsies is associated with improved disease-free survival, suggesting beneficial antitumor functions.
Inoue, A;Matsumoto, T;Ito, Y;Saegusa, M;Takahashi, H;
| DOI: 10.1016/j.humpath.2022.10.008
The number of deaths due to oral squamous carcinoma (OSCC), a malignant tumor of the oral cavity, is on the increase. We examined fibrinogen (FIB) expression in patients with OSCC and developed novel immunoprofile classification methods that include FIB. The plasma FIB level in patients with OSCC was elevated compared with that in patients with non-tumor oral disease (non-T); using a cut-off point of 342 mg/dL, we found the area under the curve-receiver operating characteristic level for OSCC was 0.745. Similarly, FIB expression in OSCC tissues was significantly higher compared with that in non-T tissues. Hierarchical clustering based on the immunoprofile of several markers including FIB, p53, and p16 revealed four groups that could be used to categorize OSCC cases (referred to as immunoprofile subtypes, [IPS], I-IV). Tumors in IPS-II, which were FIB+/p53+, were associated with a significantly worse overall survival (OS) when compared with the other subtypes. We conclude that our IPS classification system can facilitate prognostic evaluation in OSCC, and that quantification of FIB is an important component of the classification strategy for this disease.
Keenan, BP;McCarthy, EE;Ilano, A;Yang, H;Zhang, L;Allaire, K;Fan, Z;Li, T;Lee, DS;Sun, Y;Cheung, A;Luong, D;Chang, H;Chen, B;Marquez, J;Sheldon, B;Kelley, RK;Ye, CJ;Fong, L;
PMID: 36130508 | DOI: 10.1016/j.celrep.2022.111384
Suppressive myeloid cells can contribute to immunotherapy resistance, but their role in response to checkpoint inhibition (CPI) in anti-PD-1 refractory cancers, such as biliary tract cancer (BTC), remains elusive. We use multiplexed single-cell transcriptomic and epitope sequencing to profile greater than 200,000 peripheral blood mononuclear cells from advanced BTC patients (n = 9) and matched healthy donors (n = 8). Following anti-PD-1 treatment, CD14+ monocytes expressing high levels of immunosuppressive cytokines and chemotactic molecules (CD14CTX) increase in the circulation of patients with BTC tumors that are CPI resistant. CD14CTX can directly suppress CD4+ T cells and induce SOCS3 expression in CD4+ T cells, rendering them functionally unresponsive. The CD14CTX gene signature associates with worse survival in patients with BTC as well as in other anti-PD-1 refractory cancers. These results demonstrate that monocytes arising after anti-PD-1 treatment can induce T cell paralysis as a distinct mode of tumor-mediated immunosuppression leading to CPI resistance.
Therapeutic advances in medical oncology
Stroes, CI;Schokker, S;Khurshed, M;van der Woude, SO;Mathôt, RA;Slingerland, M;de Vos-Geelen, J;Zucchetti, M;Matteo, C;van Dijk, E;Ylstra, B;Thijssen, V;Derks, S;Godefa, T;Dijksterhuis, W;Breimer, GE;van Delden, OM;Verhoeven, RH;Meijer, SL;Bijlsma, MF;van Laarhoven, HW;
PMID: 35782751 | DOI: 10.1177/17588359221109196
Regorafenib monotherapy, a multikinase inhibitor of angiogenesis, tumor microenvironment, and tumorigenesis, showed promising results in gastric cancer. We aimed to assess the tolerability of regorafenib and paclitaxel in patients with advanced esophagogastric cancer (EGC) refractory to first-line treatment, and explore potential biomarkers.Patients received paclitaxel (80 mg/m2) on days 1, 8, and 15 of a 28-day cycle and regorafenib (80/120/160 mg) on days 1-21 in the dose-escalation cohort, and the maximum-tolerated dose (MTD) in the dose-expansion cohort. Exploratory, overall survival (OS) and progression-free survival (PFS) were compared to a propensity-score matched cohort receiving standard second-/third-line systemic treatment. Paclitaxel pharmacokinetics were assessed using samples from day 1 (D1) and day 15 (D15). We performed enzyme-linked immunosorbent assay measurements of galectin-1, RNA sequencing, and shallow whole-genome sequencing of metastatic tumor biopsies for biomarker analyses.In the dose-escalation cohort (n = 14), the MTD of regorafenib was 120 mg. In all, 34 patients were enrolled in the dose-expansion cohort. Most common toxicities (all grades; grade ⩾ 3) were fatigue (79%; 4%) and sensory neuropathy (63%; 4%). Best responses achieved were partial response (28%) and stable disease (54%). Median OS and PFS were 7.8 and 4.2 months, respectively (median follow-up: 7.8 months). OS (p = 0.08) and PFS (p = 0.81) were not significantly improved compared to the matched cohort. Paclitaxel concentrations were significantly increased with regorafenib (D15) compared with paclitaxel only (D1; p < 0.05); no associations were observed with toxicity or efficacy. An increase in circulating galectin-1 compared to baseline was associated with shorter OS (p < 0.01). Enrichment of angiogenesis-related gene expression was observed in short survivors measured by RNA sequencing. Chromosome 19q13.12-q13.2 amplification was associated with shorter OS (p = 0.02) and PFS (p = 0.02).Treatment with regorafenib and paclitaxel is tolerable and shows promising efficacy in advanced EGC refractory to first-line treatment. Galectin-1 and chromosome 19q13.12-q13.2 amplification could serve as negative predictive biomarkers for treatment response.Clinicaltrials.gov, NCT02406170, https://clinicaltrials.gov/ct2/show/NCT02406170.