Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (25)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • (-) Remove Axin2 filter Axin2 (19)
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • AR-V7 (8) Apply AR-V7 filter
  • EBER1 (8) Apply EBER1 filter
  • CD274 (7) Apply CD274 filter
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • (-) Remove AR filter AR (6)
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.5 HD Red assay (11) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (5) Apply RNAscope 2.0 Assay filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • (-) Remove Cancer filter Cancer (25)
  • Stem Cells (6) Apply Stem Cells filter
  • Developmental (1) Apply Developmental filter
  • HPV (1) Apply HPV filter
  • Infectious Disease (1) Apply Infectious Disease filter

Category

  • Publications (25) Apply Publications filter
Analytic Validation of RNA In Situ Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer.

Clin Cancer Res.

2016 May 10

Guedes L, Morais C, Almutairi F, Haffner MC, Zheng Q, Isaacs JT, Antonarakis ES, Lu C, Tsai H, Luo J, De Marzo AM, Lotan TL.
PMID: 27166397 | DOI: -

Abstract

PURPOSE:

RNA expression of androgen receptor splice variants may be a biomarker of resistance to novel androgen deprivation therapies in castrate resistant prostate cancer (CRPC). We analytically validated an RNA in situ hybridization (RISH) assay for total AR and AR-V7 for use in formalin fixed paraffin embedded (FFPE) prostate tumors.

EXPERIMENTAL DESIGN:

We used prostate cell lines and xenografts to validate chromogenic RISH to detect RNA containing AR exon 1 (AR-E1, surrogate for total AR RNA species) and cryptic exon 3 (AR-CE3, surrogate for AR-V7 expression). RISH signals were quantified in FFPE primary tumors and CRPC specimens, comparing to known AR and AR-V7 status by immunohistochemistry and RT-PCR.

RESULTS:

The quantified RISH results correlated significantly with total AR and AR-V7 levels by RT-PCR in cell lines, xenografts and autopsy metastases. Both AR-E1 and AR-CE3 RISH signals were localized in nuclear punctae in addition to the expected cytoplasmic speckles. Compared to admixed benign glands, AR-E1 expression was significantly higher in primary tumor cells with a median fold increase of 3.0 and 1.4 in two independent cohorts (p<0.0001 and p=0.04, respectively). While AR-CE3 expression was detectable in primary prostatic tumors, levels were substantially higher in a subset of CRPC metastases and cell lines, and were correlated with AR-E1 expression.

CONCLUSIONS:

RISH for AR-E1 and AR-CE3 is an analytically valid method to examine total AR and AR-V7 RNA levels in FFPE tissues. Future clinical validation studies are required to determine whether AR RISH is a prognostic or predictive biomarker in specific clinical contexts.

A High-Fat Diet Activates the BAs-FXR Axis and Triggers Cancer-Associated Fibroblast Properties in the Colon

Cellular and molecular gastroenterology and hepatology

2021 Dec 29

Kim, TY;Kim, S;Kim, Y;Lee, YS;Lee, S;Lee, SH;Kweon, MN;
PMID: 34971821 | DOI: 10.1016/j.jcmgh.2021.12.015

Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors.Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining. RNA sequencing and metabolic function were analyzed in mesenchymal stromal cells (MSCs) from PD- and HFD-fed mice. Fecal microbiota were analyzed by 16s rRNA sequencing. Bile salt hydrolase activity and bile acid (BA) levels were measured.We found that expression of CD44 and Wnt signal-related genes was higher in the colonic crypts of HFD-fed mice than in those fed a PD. Within the ISC niche, MSCs were expanded and secreted predominant levels of Wnt2b in the colon of HFD-fed mice. Of note, increased energy metabolism and cancer-associated fibroblast (CAF)-like properties were found in the colonic MSCs of HFD-fed mice. Moreover, colonic MSCs from HFD-fed mice promoted the growth of tumorigenic properties and accelerated the expression of cancer stem cell (CSC)-related markers in colon organoids. In particular, production of primary and secondary BAs was increased through the expansion of bile salt hydrolase-encoding bacteria in HFD-fed mice. Most importantly, BAs-FXR interaction stimulated Wnt2b production in colonic CAF-like MSCs.HFD-induced colonic CAF-like MSCs play an indispensable role in balancing the properties of CSCs through activation of the BAs-FXR axis.
Characterization of novel cell lines derived from a MYC-driven murine model of lethal metastatic adenocarcinoma of the prostate

Prostate.

2018 May 30

Markowski MC, Hubbard GK, Hicks JL, Zheng Q, King A, Esopi D, Rege A, Yegnasubramanian S, Bieberich CJ, De Marzo AM.
PMID: 29851094 | DOI: 10.1002/pros.23657

Abstract

BACKGROUND:

Loss or mutation of PTEN alleles at 10q23 in combination with 8q24 amplification (encompassing MYC) are common findings in aggressive, human prostate cancer. Our group recently developed a transgenic murine model of prostate cancer involving prostate-specific Pten deletion and forced expression of MYC under the control of the Hoxb13 promoter. MYC overexpression cooperated with Pten loss to recapitulate lethal, human prostate cancer.

METHOD:

We now report on the generation of two mouse prostate cancer cell lines, BMPC1 and BMPC2, derived from a lymph node, and liver metastasis, respectively.

RESULTS:

Both cell lines demonstrate a phenotype consistent with adenocarcinoma and grew under standard tissue culture conditions. Androgen receptor (AR) protein expression is minimal (BMPC1) or absent (BMPC2) consistent with AR loss observed in the BMPC mouse model of invasive adenocarcinoma. Growth in media containing charcoal-stripped serum resulted in an increase in AR mRNA in BMPC1 cells with no effect on protein expression, unless androgens were added, in which case AR protein was stabilized, and showed nuclear localization. AR expression in BMPC2 cells was not effected by growth media or treatment with androgens. Treatment with an anti-androgen/castration or androgen supplemented media did not affect in vitro or in vivo growth of either cell line, irrespective of nuclear AR detection.

DISCUSSION:

These cell lines are a novel model of androgen-insensitive prostatic adenocarcinoma driven by MYC over-expression and Pten loss.

Expression pattern of androgen receptor and AR-V7 in androgen deprivation therapy naïve salivary duct carcinomas

Hum Pathol.

2018 Sep 26

Yang RK, Zhao P, Lu C, Luo J, Hu R.
PMID: 30267779 | DOI: 10.1016/j.humpath.2018.09.009

Androgen deprivation therapy (ADT) has been used to treat salivary duct carcinoma (SDC). The androgen receptor splice variant-7 (AR-V7) has been detected in castration-resistant prostate cancer (CRPC) and implicated in resistance to androgen receptor (AR)-targeted therapies. Given the potential role of AR/AR-V7 in SDC treatment, this study focuses on AR/AR-V7 expression in SDC specimens collected prior to ADT. RNA in situ hybridization (ISH) and immunohistochemistry (IHC) to detect total AR and AR-V7 were performed on formalin-fixed, paraffin-embedded SDC specimens from 23 patients. Full length AR (AR-FL) and AR-V7 transcripts were quantified in a subset of tumors by reverse transcription polymerase chain reaction (RT-PCR). Twenty SDCs were positive for total AR by ISH and IHC. Among AR positive SDCs, 70% (14/20) were positive for AR-V7 mRNA by ISH, while 15% (3/20) were positive for AR-V7 protein by IHC. The three SDCs which expressed the highest levels of AR-V7 were all from female patients; one of them expressed significant amount of AR-V7 and barely detectable AR-FL transcripts by RT-PCR. Immunohistochemistry expression of Forkhead box protein A1, prostate-specific antigen, prostatic acid phosphatase, NKX3.1 was observed in some SDCs regardless of patient gender. Five SDCs demonstrated strong human epidermal growth factor receptor 2 (HER2) expression. We conclude that treatment-naïve SDCs may express AR-V7 at levels comparable to or even exceeding the levels detected in CRPC. Our data support the feasibility to incorporate AR-V7 assessment via ISH and/or IHC in the ongoing clinical trials evaluating the therapeutic benefit of AR targeted therapies in SDC patients.

A Clinical Applicable Gene Expression Classifier Reveals Intrinsic and Extrinsic Contributions to Consensus Molecular Subtypes in Primary and Metastatic Colon Cancer.

Clin Cancer Res.

2019 Apr 19

Piskol R, Huw LY, Sergin I, Klijn C, Modrusan Z, Kim D, Kljavin NM, Tam R, Patel R, Burton J, Penuel E, Qu X, Koeppen H, Sumiyoshi T, de Sauvage FJ, Lackner MR, de Sousa E Melo F, Kabbarah O.
PMID: 31004000 | DOI: 10.1158/1078-0432.CCR-18-3032

Abstract

PURPOSE:

Four consensus molecular subtypes (CMS1-4) of colorectal cancer (CRC) were identified in primary tumors and found to be associated with distinctive biological features and clinical outcomes. Given that distant metastasis largely accounts for CRC-related mortality, we examined the molecular and clinical attributes of CMS in metastatic CRC (mCRC).

EXPERIMENTAL DESIGN:

We developed a CRC-focused Nanostring based CMS classifier that is ideally suited to interrogate archival tissues. We successfully employ this panel in the CMS classification of FFPE tissues from mCRC cohorts, one of which is comprised of paired primary tumors and metastases. Finally, we developed novel mouse implantation models to enable modelling of CRC in vivo at relevant sites.

RESULTS:

Using our classifier we find that the biological hallmarks of mCRC, including CMS, are in general highly similar to those observed in non-metastatic early stage disease. Importantly, our data demonstrate that CMS1 has the worst outcome in relapsed disease, compared to other CMS. Assigning CMS to primary tumors and their matched metastases revealed mostly concordant subtypes between primary and metastasis. Molecular analysis of matched discordant pairs revealed differences in stromal composition at each site. The development of two novel in vivo orthotopic implantation models further reinforces the notion that extrinsic factors may impact on CMS identification in matched primary and metastatic CRC.

CONCLUSION:

We describe the utility of a Nanostring panel for CMS classification of FFPE clinical samples. Our work reveals the impact of intrinsic and extrinsic factors on CRC heterogeneity during disease progression.

The WNT10B Network Is Associated with Survival and Metastases in Chemoresistant Triple-Negative Breast Cancer.

Cancer Res.

2019 Mar 01

El Ayachi I, Fatima I, Wend P, Alva-Ornelas JA, Runke S, Kuenzinger WL, Silva J, Silva W, Gray JK, Lehr S, Barch HC, Krutilina RI, White AC, Cardiff R, Yee LD, Yang L, O'Regan RM, Lowry WE, Seagroves TN, Seewaldt V, Krum SA, Miranda-Carboni GA.
PMID: 30563890 | DOI: 10.1158/0008-5472.CAN-18-1069

Triple-negative breast cancer (TNBC) commonly develops resistance to chemotherapy, yet markers predictive of chemoresistance in this disease are lacking. Here, we define WNT10B-dependent biomarkers for β-CATENIN/HMGA2/EZH2 signaling predictive of reduced relapse-free survival. Concordant expression of HMGA2 and EZH2 proteins is observed in MMTV-Wnt10bLacZ transgenic mice during metastasis, and Hmga2 haploinsufficiency decreased EZH2 protein expression, repressing lung metastasis. A novel autoregulatory loop interdependent on HMGA2 and EZH2 expression is essential for β-CATENIN/TCF-4/LEF-1 transcription. Mechanistically, both HMGA2 and EZH2 displaced Groucho/TLE1 from TCF-4 and served as gatekeepers for K49 acetylation on β-CATENIN, which is essential for transcription. In addition, we discovered that HMGA2-EZH2 interacts with the PRC2 complex. Absence of HMGA2 or EZH2 expression or chemical inhibition of Wnt signaling in a chemoresistant patient-derived xenograft (PDX) model of TNBC abolished visceral metastasis, repressing AXIN2, MYC, EZH2, and HMGA2 expression in vivo. Combinatorial therapy of a WNT inhibitor with doxorubicin synergistically activated apoptosis in vitro, resensitized PDX-derived cells to doxorubicin, and repressed lung metastasis in vivo. We propose that targeting the WNT10B biomarker network will provide improved outcomes for TNBC. SIGNIFICANCE: These findings reveal targeting the WNT signaling pathway as a potential therapeutic strategy in triple-negative breast cancer.

SOX9 drives WNT pathway activation in prostate cancer.

J Clin Invest.

2016 Apr 04

Ma F, Ye H, He HH, Gerrin SJ, Chen S, Tanenbaum BA, Cai C, Sowalsky AG, He L, Wang H, Balk SP, Yuan X.
PMID: 27043282 | DOI: 10.1172/JCI78815.

The transcription factor SOX9 is critical for prostate development, and dysregulation of SOX9 is implicated in prostate cancer (PCa). However, the SOX9-dependent genes and pathways involved in both normal and neoplastic prostate epithelium are largely unknown. Here, we performed SOX9 ChIP sequencing analysis and transcriptome profiling of PCa cells and determined that SOX9 positively regulates multiple WNT pathway genes, including those encoding WNT receptors (frizzled [FZD] and lipoprotein receptor-related protein [LRP] family members) and the downstream β-catenin effector TCF4. Analyses of PCa xenografts and clinical samples both revealed an association between the expression of SOX9 and WNT pathway components in PCa. Finally, treatment of SOX9-expressing PCa cells with a WNT synthesis inhibitor (LGK974) reduced WNT pathway signaling in vitro and tumor growth in murine xenograft models. Together, our data indicate that SOX9 expression drives PCa by reactivating the WNT/β-catenin signaling that mediates ductal morphogenesis in fetal prostate and define a subgroup of patients who would benefit from WNT-targeted therapy.

Combined activation of MAP kinase pathway and β-catenin signaling cause deep penetrating nevi

Nature Communications

2017 Sep 21

Yeh I, Lang UE, Durieux E, Tee MK, Jorapur A, Shain AH, Haddad V, Pissaloux D, Chen X, Cerroni L, Judson RL, LeBoit PE, McCalmont TH, Bastian BC, de la Fouchardière A.
PMID: 28935960 | DOI: 10.1038/s41467-017-00758-3

Deep penetrating nevus (DPN) is characterized by enlarged, pigmented melanocytes that extend through the dermis. DPN can be difficult to distinguish from melanoma but rarely displays aggressive biological behavior. Here, we identify a combination of mutations of the β-catenin and mitogen-activated protein kinase pathways as characteristic of DPN. Mutations of the β-catenin pathway change the phenotype of a common nevus with BRAF mutation into that of DPN, with increased pigmentation, cell volume and nuclear cyclin D1 levels. Our results suggest that constitutive β-catenin pathway activation promotes tumorigenesis by overriding dependencies on the microenvironment that constrain proliferation of common nevi. In melanoma that arose from DPN we find additional oncogenic alterations. We identify DPN as an intermediate stage in the step-wise progression from nevus to melanoma. In summary, we delineate specific genetic alterations and their sequential order, information that can assist in the diagnostic classification and grading of these distinctive neoplasms.Deep penetrating nevi (DPN) are unusual melanocytic neoplasms with unknown genetic drivers. Here the authors show that majority of DPN harbor activating mutations in the β-catenin and the MAP-kinase pathways; this characteristic can help in the classification and grading of these distinctive neoplasms.

Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis

Nature communications

2021 Jun 08

Leach, JDG;Vlahov, N;Tsantoulis, P;Ridgway, RA;Flanagan, DJ;Gilroy, K;Sphyris, N;Vázquez, EG;Vincent, DF;Faller, WJ;Hodder, MC;Raven, A;Fey, S;Najumudeen, AK;Strathdee, D;Nixon, C;Hughes, M;Clark, W;Shaw, R;S:CORT consortium, ;van Hooff, SR;Huels, DJ;Medema, JP;Barry, ST;Frame, MC;Unciti-Broceta, A;Leedham, SJ;Inman, GJ;Jackstadt, R;Thompson, BJ;Campbell, AD;Tejpar, S;Sansom, OJ;
PMID: 34103493 | DOI: 10.1038/s41467-021-23717-5

Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFβ signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFβ-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFβ-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.
Analytical Validation and Clinical Qualification of a New Immunohistochemical Assay for Androgen Receptor Splice Variant-7 Protein Expression in Metastatic Castration-resistant Prostate Cancer

European Urology

2016 Apr 23

Jonathan Welti J, Rodrigues DN, Sharp A, Sun S, Lorentea D, Riisnaes R, Figueiredo I, Zafeiriou Z, Rescigno P, de Bono JS, Plymate SR.
PMID: - | DOI: 10.1016/j.eururo.2016.03.049

Abstract

Background
The androgen receptor splice variant-7 (AR-V7) has been implicated in the development of castration-resistant prostate cancer (CRPC) and resistance to abiraterone and enzalutamide.

Objective
To develop a validated assay for detection of AR-V7 protein in tumour tissue and determine its expression and clinical significance as patients progress from hormone-sensitive prostate cancer (HSPC) to CRPC.

Design, setting, and participants
Following monoclonal antibody generation and validation, we retrospectively identified patients who had HSPC and CRPC tissue available for AR-V7 immunohistochemical (IHC) analysis.

Outcome measurements and statistical analysis
Nuclear AR-V7 expression was determined using IHC H score (HS) data. The change in nuclear AR-V7 expression from HSPC to CRPC and the association between nuclear AR-V7 expression and overall survival (OS) was determined.

Results and limitations
Nuclear AR-V7 expression was significantly lower in HSPC (median HS 50, interquartile range [IQR] 17.5–90) compared to CRPC (HS 135, IQR 80–157.5; p < 0.0001), and in biopsy tissue taken before (HS 80, IQR 30–136.3) compared to after (HS 140, IQR 105–167.5; p = 0.007) abiraterone or enzalutamide treatment. Lower nuclear AR-V7 expression at CRPC biopsy was associated with longer OS (hazard ratio 1.012, 95% confidence interval 1.004–1.020; p = 0.003). While this monoclonal antibody primarily binds to AR-V7 in PC biopsy tissue, it may also bind to other proteins.

Conclusions
We provide the first evidence that nuclear AR-V7 expression increases with emerging CRPC and is prognostic for OS, unlike antibody staining for the AR N-terminal domain. These data indicate that AR-V7 is important in CRPC disease biology; agents targeting AR splice variants are needed to test this hypothesis and further improve patient outcome from CRPC.

Patient summary
In this study we found that levels of the protein AR-V7 were higher in patients with advanced prostate cancer. A higher level of AR-V7 identifies a group of patients who respond less well to certain prostate cancer treatments and live for a shorter period of time.

In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells.

Development.

2017 Jul 25

Ghosh A, Syed SM, Tanwar PS.
PMID: 28743800 | DOI: 10.1242/dev.149989

The epithelial lining of the Fallopian tube is vital for fertility, providing nutrition to gametes, and facilitating their transport. It is composed of two major cell types: secretory cells and ciliated cells. Interestingly, human ovarian cancer precursor lesions are primarily consisting of secretory cells. It is unclear why secretory cells are the dominant cell type in these lesions. Additionally, the underlying mechanisms governing Fallopian tube epithelial homoeostasis are currently unknown. In the present study, we showed that across the different developmental stages of mouse oviduct, secretory cells are the most frequently dividing cells of the oviductal epithelium. In vivo genetic cell lineage tracing showed that secretory cells not only self-renew, but also give rise to ciliated cells. Analysis of a Wnt reporter mouse model and different Wnt target genes showed that the Wnt signaling pathway is involved in oviductal epithelial homoeostasis. By developing two triple transgenic mouse models, we showed that Wnt/β-catenin signaling is essential for self-renewal as well as differentiation of secretory cells. In summary, our results provide mechanistic insight into oviductal epithelial homoeostasis.

Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer

Nat Commun.

2019 Feb 13

Gay DM, Ridgway RA, Müeller M, Hodder MC, Hedley A, Clark W, Leach JD, Jackstadt R, Nixon C, Huels DJ, Campbell AD, Bird TG, Sansom OJ.
PMID: 30760720 | DOI: 10.1038/s41467-019-08586-3

Different thresholds of Wnt signalling are thought to drive stem cell maintenance, regeneration, differentiation and cancer. However, the principle that oncogenic Wnt signalling could be specifically targeted remains controversial. Here we examine the requirement of BCL9/9l, constituents of the Wnt-enhanceosome, for intestinal transformation following loss of the tumour suppressor APC. Although required for Lgr5+ intestinal stem cells and regeneration, Bcl9/9l deletion has no impact upon normal intestinal homeostasis. Loss of BCL9/9l suppressed many features of acute APC loss and subsequent Wnt pathway deregulation in vivo. This resulted in a level of Wnt pathway activation that favoured tumour initiation in the proximal small intestine (SI) and blocked tumour growth in the colon. Furthermore, Bcl9/9l deletion completely abrogated β-catenin driven intestinal and hepatocellular transformation. We speculate these results support the just-right hypothesis of Wnt-driven tumour formation. Importantly, loss of BCL9/9l is particularly effective at blocking colonic tumourigenesis and mutations that most resemble those that occur in human cancer.

Pages

  • 1
  • 2
  • 3
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?