Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (15)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (108) Apply TBD filter
  • HPV E6/E7 (75) Apply HPV E6/E7 filter
  • Lgr5 (61) Apply Lgr5 filter
  • PD-L1 (25) Apply PD-L1 filter
  • HPV-HR18 (20) Apply HPV-HR18 filter
  • Axin2 (19) Apply Axin2 filter
  • HPV (19) Apply HPV filter
  • GLI1 (15) Apply GLI1 filter
  • HER2 (15) Apply HER2 filter
  • FGFR1 (13) Apply FGFR1 filter
  • MALAT1 (12) Apply MALAT1 filter
  • CD68 (11) Apply CD68 filter
  • Ifng (10) Apply Ifng filter
  • MYC (10) Apply MYC filter
  • CXCL10 (9) Apply CXCL10 filter
  • OLFM4 (9) Apply OLFM4 filter
  • (-) Remove AR-V7 filter AR-V7 (8)
  • EBER1 (8) Apply EBER1 filter
  • (-) Remove CD274 filter CD274 (7)
  • ETV1 (7) Apply ETV1 filter
  • GREM1 (7) Apply GREM1 filter
  • HOTAIR (7) Apply HOTAIR filter
  • OLFM4 (7) Apply OLFM4 filter
  • TERT (7) Apply TERT filter
  • HPV HR18 (7) Apply HPV HR18 filter
  • AR (6) Apply AR filter
  • BRCA1 (6) Apply BRCA1 filter
  • CD3E (6) Apply CD3E filter
  • CD4 (6) Apply CD4 filter
  • MET (6) Apply MET filter
  • CSF1 (6) Apply CSF1 filter
  • Ccl2 (6) Apply Ccl2 filter
  • Ptch1 (6) Apply Ptch1 filter
  • FGFR2 (6) Apply FGFR2 filter
  • Vegfa (6) Apply Vegfa filter
  • PDGFRA (6) Apply PDGFRA filter
  • CXCL12 (6) Apply CXCL12 filter
  • HPV18 (6) Apply HPV18 filter
  • Il-6 (6) Apply Il-6 filter
  • CD3 (6) Apply CD3 filter
  • SOX2 (5) Apply SOX2 filter
  • EGFR (5) Apply EGFR filter
  • ESR1 (5) Apply ESR1 filter
  • DUSP6 (5) Apply DUSP6 filter
  • MDM2 (5) Apply MDM2 filter
  • MKI67 (5) Apply MKI67 filter
  • NOTUM (5) Apply NOTUM filter
  • PTEN (5) Apply PTEN filter
  • Cxcl1 (5) Apply Cxcl1 filter
  • HPV16 (5) Apply HPV16 filter

Product

  • RNAscope 2.0 Assay (6) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • BASEscope Assay RED (1) Apply BASEscope Assay RED filter
  • RNAscope (1) Apply RNAscope filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter

Research area

  • (-) Remove Cancer filter Cancer (15)
  • Immunotherapy (1) Apply Immunotherapy filter
  • Inflammation (1) Apply Inflammation filter

Category

  • Publications (15) Apply Publications filter
Analytic Validation of RNA In Situ Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer.

Clin Cancer Res.

2016 May 10

Guedes L, Morais C, Almutairi F, Haffner MC, Zheng Q, Isaacs JT, Antonarakis ES, Lu C, Tsai H, Luo J, De Marzo AM, Lotan TL.
PMID: 27166397 | DOI: -

Abstract

PURPOSE:

RNA expression of androgen receptor splice variants may be a biomarker of resistance to novel androgen deprivation therapies in castrate resistant prostate cancer (CRPC). We analytically validated an RNA in situ hybridization (RISH) assay for total AR and AR-V7 for use in formalin fixed paraffin embedded (FFPE) prostate tumors.

EXPERIMENTAL DESIGN:

We used prostate cell lines and xenografts to validate chromogenic RISH to detect RNA containing AR exon 1 (AR-E1, surrogate for total AR RNA species) and cryptic exon 3 (AR-CE3, surrogate for AR-V7 expression). RISH signals were quantified in FFPE primary tumors and CRPC specimens, comparing to known AR and AR-V7 status by immunohistochemistry and RT-PCR.

RESULTS:

The quantified RISH results correlated significantly with total AR and AR-V7 levels by RT-PCR in cell lines, xenografts and autopsy metastases. Both AR-E1 and AR-CE3 RISH signals were localized in nuclear punctae in addition to the expected cytoplasmic speckles. Compared to admixed benign glands, AR-E1 expression was significantly higher in primary tumor cells with a median fold increase of 3.0 and 1.4 in two independent cohorts (p<0.0001 and p=0.04, respectively). While AR-CE3 expression was detectable in primary prostatic tumors, levels were substantially higher in a subset of CRPC metastases and cell lines, and were correlated with AR-E1 expression.

CONCLUSIONS:

RISH for AR-E1 and AR-CE3 is an analytically valid method to examine total AR and AR-V7 RNA levels in FFPE tissues. Future clinical validation studies are required to determine whether AR RISH is a prognostic or predictive biomarker in specific clinical contexts.

Clinicopathological analysis and prognostic significance of programmed cell death-ligand 1 protein and mRNA expression in non-small cell lung cancer

PLoS One.

2018 Jun 01

Kim H, Kwon HJ, Park SY, Park Y, Park E, Chung JH.
PMID: 29856861 | DOI: 10.1371/journal.pone.0198634

In this study, we present the clinicopathological features associated with PD-L1 protein and mRNA expression in a large Asian cohort of patients with non-small cell lung cancer (NSCLC) and assessed the prognostic implications of PD-L1 expression, particularly in early stage NSCLC. We retrospectively analyzed 687 NSCLC specimens (476 adenocarcinoma and 211 squamous cell carcinoma) using tissue microarray. PD-L1 immunohistochemistry (IHC) was performed using Dako 22C3 pharmDx assay and PDL1 mRNA was measured using RNA in situ hybridization (RISH). The overall prevalence of PD-L1 protein expression was 25.2% in tumor cells and PDL1 mRNA expression was 11.9%. There was a strong positive correlation between PD-L1 IHC and RISH results (Spearman's rho = 0.6, p<0.001). In adenocarcinoma, PD-L1 protein and mRNA expressions significantly correlated with poorly differentiated histologic subtype (p<0.001 and p = 0.002, respectively). PD-L1 expression was also associated with genetic alteration in adenocarcinoma. High PD-L1 expression level was associated with EGFR-naïve and KRAS-mutant subgroup (p = 0.001 and p = 0.017, respectively). With a 1% cut-off value, PD-L1 protein expression showed a short overall survival duration in early stage adenocarcinoma with marginal significance (p = 0.05, Hazard ratio = 1.947). Our study revealed that PD-L1 expression varied with histologic subtype and genomic alteration status in lung adenocarcinoma, and activation of the PD-L1 pathway may be a poor prognostic factor especially in early stage lung adenocarcinoma. In addition, PDL1 RISH showed promising results in predicting PD-L1 protein expression in NSCLC.

Prognostic Value of PD-L1, PD-1 and CD8A in Canine Diffuse Large B-Cell Lymphoma Detected by RNAscope

Veterinary sciences

2021 Jun 29

Aresu, L;Marconato, L;Martini, V;Fanelli, A;Licenziato, L;Foiani, G;Melchiotti, E;Nicoletti, A;Vascellari, M;
PMID: 34209830 | DOI: 10.3390/vetsci8070120

Immune checkpoints are a set of molecules dysregulated in several human and canine cancers and aberrations of the PD-1/PD-L1 axis are often correlated with a worse prognosis. To gain an insight into the role of immune checkpoints in canine diffuse large B-cell lymphoma (cDLBCL), we investigated PD-L1, PD-1 and CD8A expression by RNAscope. Results were correlated with several clinico-pathological features, including treatment, Ki67 index and outcome. A total of 33 dogs treated with chemotherapy (n = 12) or chemoimmunotherapy with APAVAC (n = 21) were included. PD-L1 signal was diffusely distributed among neoplastic cells, whereas PD-1 and CD8A were localized in tumor infiltrating lymphocytes. However, PD-1 mRNA was also retrieved in tumor cells. An association between PD-L1 and PD-1 scores was identified and a higher risk of relapse and lymphoma-related death was found in dogs treated with chemotherapy alone and dogs with higher PD-L1 and PD-1 scores. The correlation between PD-L1 and PD-1 is in line with the mechanism of immune checkpoints in cancers, where neoplastic cells overexpress PD-L1 that, in turn, binds PD-1 receptors in activated TIL. We also found that Ki67 index was significantly increased in dogs with the highest PD-L1 and PD-1 scores, indirectly suggesting a role in promoting tumor proliferation. Finally, even if the biological consequence of PD-1+ tumor cells is unknown, our findings suggest that PD-1 intrinsic expression in cDLBCL might contribute to tumor growth escaping adaptive immunity.
Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells.

Mol Cancer Ther.

2017 Jul 20

Tummala R, Lou W, Gao AC, Nadiminty N.
PMID: 28729398 | DOI: 10.1158/1535-7163.MCT-17-0030

Prostate cancer remains dependent on androgen receptor signaling even after castration. Aberrant androgen receptor signaling in castration resistant prostate cancer is mediated by mechanisms such as alterations in the androgen receptor and activation of interacting signaling pathways. Clinical evidence confirms that resistance to the next generation anti-androgen, enzalutamide, may be mediated to a large extent by alternative splicing of the androgen receptor to generate constitutively active splice variants such as AR-V7. The splice variants AR-V7 and Arv567es have been implicated in the resistance to not only enzalutamide, but also to abiraterone and other conventional therapeutics such as taxanes. Numerous studies including ours suggest that splicing factors such as hnRNPA1 promote the generation of AR-V7, thus contributing to enzalutamide resistance in prostate cancer cells. In the present study, we discovered that quercetin, a naturally occurring polyphenolic compound, reduces the expression of hnRNPA1, and consequently, that of AR-V7. The suppression of AR-V7 by quercetin resensitizes enzalutamide-resistant prostate cancer cells to treatment with enzalutamide. Our results indicate that quercetin downregulates hnRNPA1 expression, downregulates the expression of AR-V7, antagonizes androgen receptor signaling, and resensitizes enzalutamide-resistant prostate cancer cells to enzalutamide treatment in vivo in mouse xenografts. These findings demonstrate that suppressing the alternative splicing of the androgen receptor may have important implications in overcoming the resistance to next-generation anti-androgen therapy.

Cancer associated fibroblast FAK regulates malignant cell metabolism.

Nat Commun

2020 Mar 10

Demircioglu F, Wang J, Candido J, Costa ASH, Casado P, de Luxan Delgado B, Reynolds LE, Gomez-Escudero J, Newport E, Rajeeve V, Baker AM, Roy-Luzarraga M, Graham TA, Foster J, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Balkwill FR, Sosabowski J, Cutillas PR, Frezza C, Sancho P, Hodivala-Dilke K
PMID: 32157087 | DOI: 10.1038/s41467-020-15104-3

Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth. Proteomic and phosphoproteomic analysis in our mouse model identifies metabolic alterations which are reflected at the transcriptomic level in patients with low stromal FAK. Mechanistically we demonstrate that FAK-depletion in CAFs increases chemokine production, which via CCR1/CCR2 on cancer cells, activate protein kinase A, leading to enhanced malignant cell glycolysis. Our data uncover mechanisms whereby stromal fibroblasts regulate cancer cell metabolism independent of genetic mutations in cancer cells
Expression pattern of androgen receptor and AR-V7 in androgen deprivation therapy naïve salivary duct carcinomas

Hum Pathol.

2018 Sep 26

Yang RK, Zhao P, Lu C, Luo J, Hu R.
PMID: 30267779 | DOI: 10.1016/j.humpath.2018.09.009

Androgen deprivation therapy (ADT) has been used to treat salivary duct carcinoma (SDC). The androgen receptor splice variant-7 (AR-V7) has been detected in castration-resistant prostate cancer (CRPC) and implicated in resistance to androgen receptor (AR)-targeted therapies. Given the potential role of AR/AR-V7 in SDC treatment, this study focuses on AR/AR-V7 expression in SDC specimens collected prior to ADT. RNA in situ hybridization (ISH) and immunohistochemistry (IHC) to detect total AR and AR-V7 were performed on formalin-fixed, paraffin-embedded SDC specimens from 23 patients. Full length AR (AR-FL) and AR-V7 transcripts were quantified in a subset of tumors by reverse transcription polymerase chain reaction (RT-PCR). Twenty SDCs were positive for total AR by ISH and IHC. Among AR positive SDCs, 70% (14/20) were positive for AR-V7 mRNA by ISH, while 15% (3/20) were positive for AR-V7 protein by IHC. The three SDCs which expressed the highest levels of AR-V7 were all from female patients; one of them expressed significant amount of AR-V7 and barely detectable AR-FL transcripts by RT-PCR. Immunohistochemistry expression of Forkhead box protein A1, prostate-specific antigen, prostatic acid phosphatase, NKX3.1 was observed in some SDCs regardless of patient gender. Five SDCs demonstrated strong human epidermal growth factor receptor 2 (HER2) expression. We conclude that treatment-naïve SDCs may express AR-V7 at levels comparable to or even exceeding the levels detected in CRPC. Our data support the feasibility to incorporate AR-V7 assessment via ISH and/or IHC in the ongoing clinical trials evaluating the therapeutic benefit of AR targeted therapies in SDC patients.

PDCD1LG2 (PD-L2) RNA in situ hybridization is a sensitive,specific, and practical marker of primary mediastinal largeB-cell lymphoma

British Journal of Haematology

2017 Apr 03

Wang Z, Cook JR.
PMID: 28369778 | DOI: 10.1111/bjh.14670

Primary mediastinal large B-cell lymphoma (PMLBCL) is recognized as a distinct clinicopathological entity in the current World Health Organization classification of lymphoid neoplasms (Swerdlow et al, 2016). Gene expression profiling studies have confirmed a distinct signature in PMLBCL that differs from diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS) and partially overlaps with that found in classical Hodgkin lymphoma (Savage et al, 2003; Bea et al, 2005). In routine clinical practice, however, distinguishing between PMLBCL and DLBCL, NOS is frequently difficult, due partly to a paucity of sensitive and specific biomarkers (Martelli et al, 2008; Dorfman et al, 2012). Recent studies have shown that PMLBCL shows frequent copy number alterations or translocations involving the CD274 (PD-L1) or PDCD1LG2 (PD-L2) genes at chromosome 9p24.1, leading to overexpression of CD274 (PD-L1) and, especially, PDCD1LG (PD-L2) proteins (Shi et al, 2014; Twa & Steidl, 2015). Anti-PDCD1LG2 antibodies suitable for immunohistochemical analysis in formalin-fixed paraffin-embedded (FFPE) tissue are not currently commercially available, limiting the utility of this potential marker for routine diagnostic practice. In this study, we have performed RNA in situ hybridization (RISH) for CD274 and PDCD1LG2 RNA expression, using a standard automated immunohistochemistry (IHC) platform, and have compared the results to IHC using a commercially available anti-CD274 antibody.

Snail promotes resistance to enzalutamide through regulation of androgen receptor activity in prostate cancer.

Oncotarget.

2016 Jul 07

Ware KE, Somarelli JA, Schaeffer D, Li J, Zhang T, Park S, Patierno SR, Freedman J, Garcia-Blanco MA, Armstrong AJ.
PMID: 27409172 | DOI: 10.18632/oncotarget.10476

Treatment with androgen-targeted therapies can induce upregulation of epithelial plasticity pathways. Epithelial plasticity is known to be important for metastatic dissemination and therapeutic resistance. The goal of this study is to elucidate the functional consequence of induced epithelial plasticity on AR regulation during disease progression to identify factors important for treatment-resistant and metastatic prostate cancer. We pinpoint the epithelial plasticity transcription factor, Snail, at the nexus of enzalutamide resistance and prostate cancer metastasis both in preclinical models of prostate cancer and in patients. In patients, Snail expression is associated with Gleason 9-10 high-risk disease and is strongly overexpressed in metastases as compared to localized prostate cancer. Snail expression is also elevated in enzalutamide-resistant prostate cancer cells compared to enzalutamide-sensitive cells, and downregulation of Snail re-sensitizes enzalutamide-resistant cells to enzalutamide. While activation of Snail increases migration and invasion, it is also capable of promoting enzalutamide resistance in enzalutamide-sensitive cells. This Snail-mediated enzalutamide resistance is a consequence of increased full-length AR and AR-V7 expression and nuclear localization. Downregulation of either full-length AR or AR-V7 re-sensitizes cells to enzalutamide in the presence of Snail, thus connecting Snail-induced enzalutamide resistance directly to AR biology. Finally, we demonstrate that Snail is capable of mediating-resistance through AR even in the absence of AR-V7. These findings imply that increased Snail expressionduring progression to metastatic disease may prime cells for resistance to AR-targeted therapies by promoting AR activity in prostate cancer.

Spatial and molecular profiling of the mononuclear phagocyte network in Classic Hodgkin lymphoma

Blood

2023 Feb 07

Stewart, BJ;Fergie, M;Young, M;Jones, C;Sachdeva, A;Blain, AE;Bacon, CM;Rand, V;Ferdinand, JR;James, KR;Mahbubani, KT;Hook, CE;Jonas, N;Coleman, N;Saeb-Parsy, K;Collin, M;Clatworthy, M;Behjati, S;Carey, CD;
PMID: 36758207 | DOI: 10.1182/blood.2022015575

Classic Hodgkin lymphoma (cHL) has a rich immune infiltrate, which is an intrinsic component of the neoplastic process. Malignant Hodgkin Reed-Sternberg cells (HRSC) create an immunosuppressive microenvironment by the expression of regulatory molecules, preventing T-cell activation. It has also been demonstrated that mononuclear phagocytes (MNPs) in the vicinity of HRSC express similar regulatory mechanisms in parallel, and their presence in tissue is associated with inferior patient outcomes. MNPs in cHL have hitherto been identified with a small number of canonical markers and are usually described as 'tumor-associated macrophages'. The organization of MNP networks and interactions with HRSC remains unexplored at high resolution. Here, we defined the global immune cell composition of cHL and non-lymphoma lymph nodes, integrating data across single-cell RNA sequencing, spatial transcriptomics, and multiplexed immunofluorescence. We observed that MNPs comprise multiple subsets of monocytes, macrophages and dendritic cells (DCs). Classical monocytes, macrophages and conventional DC2 were enriched in the vicinity of HRSC, but plasmacytoid DCs and activated DCs were excluded. Unexpectedly, cDCs and monocytes expressed immunoregulatory checkpoints PD-L1, TIM-3, and the tryptophan-catabolizing protein IDO, at the same level as macrophages. Expression of these molecules increased with age. We also found that classical monocytes are important signaling hubs, potentially controlling the retention of cDC2 and ThExh via CCR1-, CCR4-, CCR5-, and CXCR3-dependent signaling. Enrichment of the cDC2-monocyte-macrophage network in diagnostic biopsies is associated with early treatment failure. These results reveal unanticipated complexity and spatial polarization within the MNP compartment, further demonstrating their potential roles in immune evasion by cHL.
Novel Junction-specific and Quantifiable In Situ Detection of AR-V7 and its Clinical Correlates in Metastatic Castration-resistant Prostate Cancer.

Eur Urol.

2017 Aug 30

Zhu Y, Sharp A, Anderson CM, Silberstein JL, Taylor M, Lu C, Zhao P, De Marzo AM, Antonarakis ES, Wang M, Wu X, Luo Y, Su N, Nava Rodrigues D, Figueiredo I, Welti J, Park E, Ma XJ, Coleman I, Morrissey C, Plymate SR, Nelson PS, de Bono JS, Luo J
PMID: 28866255 | DOI: 10.1016/j.eururo.2017.08.009

Abstract

BACKGROUND:

Androgen receptor splice variant 7 (AR-V7) has been implicated in resistance to abiraterone and enzalutamide treatment in men with metastatic castration-resistant prostate cancer (mCRPC). Tissue- or cell-based in situ detection of AR-V7, however, has been limited by lack of specificity.

OBJECTIVE:

To address current limitations in precision measurement of AR-V7 by developing a novel junction-specific AR-V7 RNA in situ hybridization (RISH) assay compatible with automated quantification.

DESIGN, SETTING, AND PARTICIPANTS:

We designed a RISH method to visualize single splice junctions in cells and tissue. Using the validated assay for junction-specific detection of the full-length AR (AR-FL) and AR-V7, we generated quantitative data, blinded to clinical data, for 63 prostate tumor biopsies.

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS:

We evaluated clinical correlates of AR-FL/AR-V7 measurements, including association with prostate-specific antigen progression-free survival (PSA-PFS) and clinical and radiographic progression-free survival (PFS), in a subset of patients starting treatment with abiraterone or enzalutamide following biopsy.

RESULTS AND LIMITATIONS:

Quantitative AR-FL/AR-V7 data were generated from 56 of the 63 (88.9%) biopsy specimens examined, of which 44 were mCRPC biopsies. Positive AR-V7 signals were detected in 34.1% (15/44) mCRPC specimens, all of which also co-expressed AR-FL. The median AR-V7/AR-FL ratio was 11.9% (range 2.7-30.3%). Positive detection of AR-V7 was correlated with indicators of high disease burden at baseline. Among the 25 CRPC biopsies collected before treatment with abiraterone or enzalutamide, positive AR-V7 detection, but not higher AR-FL, was significantly associated with shorter PSA-PFS (hazard ratio 2.789, 95% confidence interval 1.12-6.95; p=0.0081).

CONCLUSIONS:

We report for the first time a RISH method for highly specific and quantifiable detection of splice junctions, allowing further characterization of AR-V7 and its clinical significance.

PATIENT SUMMARY:

Higher AR-V7 levels detected and quantified using a novel method were associated with poorer response to abiraterone or enzalutamide in prostate cancer.

Analytical Validation and Clinical Qualification of a New Immunohistochemical Assay for Androgen Receptor Splice Variant-7 Protein Expression in Metastatic Castration-resistant Prostate Cancer

European Urology

2016 Apr 23

Jonathan Welti J, Rodrigues DN, Sharp A, Sun S, Lorentea D, Riisnaes R, Figueiredo I, Zafeiriou Z, Rescigno P, de Bono JS, Plymate SR.
PMID: - | DOI: 10.1016/j.eururo.2016.03.049

Abstract

Background
The androgen receptor splice variant-7 (AR-V7) has been implicated in the development of castration-resistant prostate cancer (CRPC) and resistance to abiraterone and enzalutamide.

Objective
To develop a validated assay for detection of AR-V7 protein in tumour tissue and determine its expression and clinical significance as patients progress from hormone-sensitive prostate cancer (HSPC) to CRPC.

Design, setting, and participants
Following monoclonal antibody generation and validation, we retrospectively identified patients who had HSPC and CRPC tissue available for AR-V7 immunohistochemical (IHC) analysis.

Outcome measurements and statistical analysis
Nuclear AR-V7 expression was determined using IHC H score (HS) data. The change in nuclear AR-V7 expression from HSPC to CRPC and the association between nuclear AR-V7 expression and overall survival (OS) was determined.

Results and limitations
Nuclear AR-V7 expression was significantly lower in HSPC (median HS 50, interquartile range [IQR] 17.5–90) compared to CRPC (HS 135, IQR 80–157.5; p < 0.0001), and in biopsy tissue taken before (HS 80, IQR 30–136.3) compared to after (HS 140, IQR 105–167.5; p = 0.007) abiraterone or enzalutamide treatment. Lower nuclear AR-V7 expression at CRPC biopsy was associated with longer OS (hazard ratio 1.012, 95% confidence interval 1.004–1.020; p = 0.003). While this monoclonal antibody primarily binds to AR-V7 in PC biopsy tissue, it may also bind to other proteins.

Conclusions
We provide the first evidence that nuclear AR-V7 expression increases with emerging CRPC and is prognostic for OS, unlike antibody staining for the AR N-terminal domain. These data indicate that AR-V7 is important in CRPC disease biology; agents targeting AR splice variants are needed to test this hypothesis and further improve patient outcome from CRPC.

Patient summary
In this study we found that levels of the protein AR-V7 were higher in patients with advanced prostate cancer. A higher level of AR-V7 identifies a group of patients who respond less well to certain prostate cancer treatments and live for a shorter period of time.

Assessment of PD-L1 mRNA and protein expression in non-small cell lung cancer, head and neck squamous cell carcinoma and urothelial carcinoma tissue specimens using RNAScope and immunohistochemistry.

PLoS One.

2019 Apr 15

Duncan DJ, Scott M, Scorer P, Barker C.
PMID: 30986253 | DOI: 10.1371/journal.pone.0215393

Four immunohistochemistry (IHC) diagnostic assays have been approved for tumour PD-L1 protein assessment in the clinic. However, mRNA detection by in situ hybridisation (ISH) could be utilised as an alternative to protein detection. Detecting spatial changes in gene expression provides vital prognostic and diagnostic information, particularly in immune oncology where the phenotype, cellular infiltration and immune activity status may be associated with patient survival. Translation of mRNA expression to a clinically relevant cut off or threshold is challenging due to variability between assays and the detection of different analytes. These studies aim to confirm the suitability of formalin fixed paraffin embedded (FFPE) tissue sections for use with RNA ISH. A comparison of mRNA expression and protein expression may inform the suitability of mRNA as a patient selection biomarker in a similar manner to IHC and provide evidence of a suitable scoring algorithm. Ninety patient samples, thirty for each indication of non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC) and urothelial carcinoma (UC), previously assessed using the VENTANA PD-L1 (SP263) Assay were chosen to represent a wide dynamic range of percentage tumour cell staining (TCIHC). Expression of mRNA was assessed by ISH using the RNAScope 2.5 assay and probe CD274/PD-L1 (Advanced Cell Diagnostics) including kit provided positive and negative control probes. Brightfield whole slide images of tissues were captured. The percentage of tumour cells with PD-L1 mRNA expression (%TCmRNA) and mean punctate dots/tumour cell were determined using image analysis. Differences in RNA expression between the IHC derived TCIHC≥25% and <25% groups were assessed using t-tests. For each indication, a receiver-operating characteristic (ROC) analysis identified thresholds for patient classification using %TCmRNA and dots/tumour cell, with reference to TCIHC≥25%. Eighty-six samples were successfully tested; 3 failed due to insufficient control probe staining, 1 due to lack of tumour. Percent TCmRNA staining using RNAScope demonstrated statistical significance (at α = 0.05) in the PD-L1 high (TCIHC ≥25%) vs the PD-L1 low (TCIHC <25%) groups for NSCLC, HNSCC, and UC. The number of punctate dots/tumour cell was significantly higher in the PD-L1 high vs the PD-L1 low groups for NSCLC and HNSCC but not UC. For %TCmRNA; ROC analysis identified thresholds of: NSCLC 18.0%, HNSCC 31.8%, UC 25.8%. For dots/tumour cell, thresholds were: NSCLC 0.26, HNSCC 0.53, UC 0.45. Routine tissue fixation and processing is suitable for RNA detection using RNAScope. PD-L1 mRNA extent and level is associated with PD-L1 status determined by IHC. Threshold optimisation for %TCmRNA and mean dots/tumour cell results in high specificity to IHC PD-L1 classification, but only moderate sensitivity.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?