Manshouri, T;Veletic, I;Li, P;Yin, CC;Post, SM;Verstovsek, S;Estrov, Z;
PMID: 35595725 | DOI: 10.1038/s41419-022-04932-4
Bone marrow (BM) fibrosis was thought to be induced exclusively by mesenchymal stromal cells (MSCs). However, we and others found that neoplastic fibrocytes induce BM fibrosis in myelofibrosis (MF). Because glioma-associated oncogene-1 (GLI1), an effector of the Hedgehog pathway, plays a role in the induction of BM fibrosis, we wondered whether GLI1 affects fibrocyte-induced BM fibrosis in MF. Multiplexed fluorescence immunohistochemistry analysis of MF patients' BM detected high levels of GLI1 in MF fibrocytes compared to MSCs or normal fibrocytes. Immunostaining, RNA in situ hybridization, gene expression analysis, and western immunoblotting detected high levels of GLI1 and GLI1-induced matrix metalloproteases (MMP) 2 and 9 in MF patients BM-derived cultured fibrocytes. Similarly, MF patients' BM-derived GLI1+ fibrocytes were found in BMs and spleens of MF xenograft mice. GLI1 silencing reduced the levels of MMP2/9, phosphorylated SMAD2/3, and procollagen-I, and knockdown or inhibition of GLI1 decreased fibrocyte formation and induced apoptosis of both fibrocytes and fibrocyte progenitors. Because Janus kinase (JAK)2-induced STAT3 is constitutively activated in MF and because STAT3 induces GLI1 expression, we sought to determine whether STAT3 activates GLI1 in MF fibrocytes. Imaging analysis detected phosphotyrosine STAT3 in MF patients' BM fibrocytes, and transfection of fibrocytes with STAT3-siRNA or treatment with a JAK1/2 inhibitor ruxolitinib reduced GLI1 and MMP2/9 levels. Chromatin immunoprecipitation and a luciferase assay revealed that STAT3 induced the expression of the GLI1 gene in both MF BM fibrocytes and fibrocyte progenitors. Together, our data suggest that STAT3-activated GLI1 contributes to the induction of BM fibrosis in MF.
SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts
Sun, J;Shin, DY;Eiseman, M;Yallowitz, AR;Li, N;Lalani, S;Li, Z;Cung, M;Bok, S;Debnath, S;Marquez, SJ;White, TE;Khan, AG;Lorenz, IC;Shim, JH;Lee, FS;Xu, R;Greenblatt, MB;
PMID: 34326333 | DOI: 10.1038/s41467-021-24819-w
Hedgehog signaling is essential for bone formation, including functioning as a means for the growth plate to drive skeletal mineralization. However, the mechanisms regulating hedgehog signaling specifically in bone-forming osteoblasts are largely unknown. Here, we identified SLIT and NTRK-like protein-5(Slitrk5), a transmembrane protein with few identified functions, as a negative regulator of hedgehog signaling in osteoblasts. Slitrk5 is selectively expressed in osteoblasts and loss of Slitrk5 enhanced osteoblast differentiation in vitro and in vivo. Loss of SLITRK5 in vitro leads to increased hedgehog signaling and overexpression of SLITRK5 in osteoblasts inhibits the induction of targets downstream of hedgehog signaling. Mechanistically, SLITRK5 binds to hedgehog ligands via its extracellular domain and interacts with PTCH1 via its intracellular domain. SLITRK5 is present in the primary cilium, and loss of SLITRK5 enhances SMO ciliary enrichment upon SHH stimulation. Thus, SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts that may be attractive as a therapeutic target to enhance bone formation.
Andreasen, CM;El-Masri, BM;MacDonald, B;Laursen, KS;Nielsen, MH;Thomsen, JS;Delaisse, JM;Andersen, TL;
PMID: 37150243 | DOI: 10.1016/j.bone.2023.116787
Although failure to establish a vascular network has been associated with many skeletal disorders, little is known about what drives development of vasculature in the intracortical bone compartments. Here, we show that intracortical bone resorption events are coordinated with development of the vasculature. We investigated the prevalence of vascular structures at different remodeling stages as well as their 3D organization using proximal femoral cortical bone from 5 girls and 6 boys (aged 6-15 years). A 2D analysis revealed that non-quiescent intracortical pores contained more vascular structures than quiescent pores (p < 0.0001). Type 2 pores, i.e., remodeling of existing pores, had a higher density of vascular structures than type 1 pores, i.e., de novo created pores (p < 0.05). Furthermore, pores at the eroded-formative remodeling stage, had more vascular structures than pores at any other remodeling stage (p < 0.05). A 3D reconstruction of an intracortical remodeling event showed that osteoclasts in the advancing tip of the cutting cone as well as preosteoclasts in the lumen expressed vascular endothelial growth factor-A (VEGFA), while VEGFA-receptors 1 and 2 mainly were expressed in endothelial cells in the adjacent vasculature. Consequently, we propose that the progression of the vascular network in intracortical remodeling events is driven by osteoclasts expressing VEGFA. Moreover, the vasculature is continuously reconfigured according to the demands of the remodeling events at the surrounding bone surfaces.
Kaucka, M;Joven Araus, A;Tesarova, M;Currie, JD;Boström, J;Kavkova, M;Petersen, J;Yao, Z;Bouchnita, A;Hellander, A;Zikmund, T;Elewa, A;Newton, PT;Fei, JF;Chagin, AS;Fried, K;Tanaka, EM;Kaiser, J;Simon, A;Adameyko, I;
PMID: 36376278 | DOI: 10.1038/s41467-022-34266-w
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.