Loss of Foxc1 and Foxc2 function in chondroprogenitor cells disrupts endochondral ossification
The Journal of biological chemistry
Almubarak, A;Lavy, R;Srnic, N;Hu, Y;Maripuri, DP;Kume, T;Berry, FB;
PMID: 34331943 | DOI: 10.1016/j.jbc.2021.101020
Endochondral ossification initiates the growth of the majority of the mammalian skeleton and is tightly controlled through gene regulatory networks. The forkhead box transcription factors Foxc1 and Foxc2 have been demonstrated to regulate aspects of osteoblast function in the formation of the skeleton but their roles in chondrocytes to control endochondral ossification are less clear. Here we demonstrate that Foxc1 expression is directly regulated by the activity of SOX9, one of the earliest transcription factors to specify the chondrocyte lineage. Moreover, we demonstrate that elevated expression of Foxc1 promotes chondrocyte differentiation in mouse embryonic stem cells and loss of Foxc1 function inhibits chondrogenesis in vitro. Using chondrocyte-targeted deletion of Foxc1 and Foxc2 in mice, we reveal a role for these factors in chondrocyte differentiation in vivo. Loss of both Foxc1 and Foxc2 caused a general skeletal dysplasia predominantly affecting the vertebral column. The long bones of the limbs were smaller, mineralization was reduced, and organization of the growth plate was disrupted; in particular, the stacked columnar organization of the proliferative chondrocyte layer was reduced in size and cell proliferation in growth plate chondrocytes was reduced. Differential gene expression analysis indicated disrupted expression patterns of chondrogenesis and ossification genes throughout the entire process of endochondral ossification in chondrocyte-specific Foxc1/Foxc2 knockout embryos. Our results suggest that Foxc1 and Foxc2 are required for normal chondrocyte differentiation and function, as loss of both genes results in disorganization of the growth plate, reduced chondrocyte proliferation, and delays in chondrocyte hypertrophy that prevents ossification of the skeleton.
Manshouri, T;Veletic, I;Li, P;Yin, CC;Post, SM;Verstovsek, S;Estrov, Z;
PMID: 35595725 | DOI: 10.1038/s41419-022-04932-4
Bone marrow (BM) fibrosis was thought to be induced exclusively by mesenchymal stromal cells (MSCs). However, we and others found that neoplastic fibrocytes induce BM fibrosis in myelofibrosis (MF). Because glioma-associated oncogene-1 (GLI1), an effector of the Hedgehog pathway, plays a role in the induction of BM fibrosis, we wondered whether GLI1 affects fibrocyte-induced BM fibrosis in MF. Multiplexed fluorescence immunohistochemistry analysis of MF patients' BM detected high levels of GLI1 in MF fibrocytes compared to MSCs or normal fibrocytes. Immunostaining, RNA in situ hybridization, gene expression analysis, and western immunoblotting detected high levels of GLI1 and GLI1-induced matrix metalloproteases (MMP) 2 and 9 in MF patients BM-derived cultured fibrocytes. Similarly, MF patients' BM-derived GLI1+ fibrocytes were found in BMs and spleens of MF xenograft mice. GLI1 silencing reduced the levels of MMP2/9, phosphorylated SMAD2/3, and procollagen-I, and knockdown or inhibition of GLI1 decreased fibrocyte formation and induced apoptosis of both fibrocytes and fibrocyte progenitors. Because Janus kinase (JAK)2-induced STAT3 is constitutively activated in MF and because STAT3 induces GLI1 expression, we sought to determine whether STAT3 activates GLI1 in MF fibrocytes. Imaging analysis detected phosphotyrosine STAT3 in MF patients' BM fibrocytes, and transfection of fibrocytes with STAT3-siRNA or treatment with a JAK1/2 inhibitor ruxolitinib reduced GLI1 and MMP2/9 levels. Chromatin immunoprecipitation and a luciferase assay revealed that STAT3 induced the expression of the GLI1 gene in both MF BM fibrocytes and fibrocyte progenitors. Together, our data suggest that STAT3-activated GLI1 contributes to the induction of BM fibrosis in MF.
SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts
Sun, J;Shin, DY;Eiseman, M;Yallowitz, AR;Li, N;Lalani, S;Li, Z;Cung, M;Bok, S;Debnath, S;Marquez, SJ;White, TE;Khan, AG;Lorenz, IC;Shim, JH;Lee, FS;Xu, R;Greenblatt, MB;
PMID: 34326333 | DOI: 10.1038/s41467-021-24819-w
Hedgehog signaling is essential for bone formation, including functioning as a means for the growth plate to drive skeletal mineralization. However, the mechanisms regulating hedgehog signaling specifically in bone-forming osteoblasts are largely unknown. Here, we identified SLIT and NTRK-like protein-5(Slitrk5), a transmembrane protein with few identified functions, as a negative regulator of hedgehog signaling in osteoblasts. Slitrk5 is selectively expressed in osteoblasts and loss of Slitrk5 enhanced osteoblast differentiation in vitro and in vivo. Loss of SLITRK5 in vitro leads to increased hedgehog signaling and overexpression of SLITRK5 in osteoblasts inhibits the induction of targets downstream of hedgehog signaling. Mechanistically, SLITRK5 binds to hedgehog ligands via its extracellular domain and interacts with PTCH1 via its intracellular domain. SLITRK5 is present in the primary cilium, and loss of SLITRK5 enhances SMO ciliary enrichment upon SHH stimulation. Thus, SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts that may be attractive as a therapeutic target to enhance bone formation.
Jing, Y;Ma, C;Liang, A;Feng, J;
| DOI: 10.1096/fasebj.2022.36.S1.I2254
The Temporomandibular joint (TMJ) is one of the most complex joints in the human body. TMJ is composed of the temporal bone, a disc and a movable mandibular condyle with abundant tendon attachments. Tendon has been thought to play the sole function of transmitting muscle forces to stabilize joints, yet it is largely unclear why tendon undergoes ectopic ossification in trauma or diseases, and whether it has any direct contribution to skeletal formation. This study aimed to investigate the full biological significance of tendon in TMJ growth. We first discovered that the TMJ condyle is composed of a well-established cartilage head and an overlooked “bony head” that grows after birth and continuously expands throughout the lifespan with little signs of remodeling. Mouse X-ray images (Fig.1a) showed little change in the cartilage head’s volume but a continuous expansion in the bony head’s mass with a low mineral content from 1 to 5 months (Fig.1b). Toluidine blue staining showed TMJ condyle had a large area of tendon attachment extending down to ramus (Fig.1c, white dotted line in lower magnification), defined by regions of tendon, interface, and TFB (Fig.1c1). The TFB morphology was distinct from endosteum-formed bone (EFB, Fig.1c1), cartilage-formed bone (CFB, Fig.1c2, rich in cartilage residual), or periosteum-formed bone (PFB, Fig.1c3) in cell shape and distribution, and ECM. TEM images further revealed that the osteocytes in the TFB were large in size, irregular in shape, had small nuclei but numerous ERs and Golgi complexes, and were embedded in ECM rich in fibropositors. In contrast, the osteocytes in EFB, CFB or PFB were spindle-shaped with larger nuclei but fewer ERs and Golgi complexes (Fig.1d). To reveal the cell source of the bony head, cell lineage tracing were used. Tracing data showed that most CFB cells originate from Col10a1+ hypertrophic chondrocytes, whereas the interface and TFB were derived from Scx+ cells (Fig.1e). RNAscope displayed high levels of Thbs4 (Thrombospondin-4, a tendon marker) and SOST (a potent inhibitor of Wnt signaling secreted by osteocytes) mRNA in TFB at bony head (Fig.1f). The Scx-CreERT2 tracing combined with IHC staining showed TFB maintained a mixed ECM of bone (Col1), cartilage (Aggrecan) and tendon (Periostin, Fig.1g). To further determine the role of tendon lineage in condyle expansion, we generated Scx-CreERT2; R26RDTA (carrying a loxP-flanked stop cassette associated with an attenuated diphtheria toxin fragment A, DTA, for the ablation of cells when Cre is active). Deletion of Scx+ cells greatly reduced the size of bony head (Fig.1h) and the thickness of interface with few Scx+/Col1+ bone cells in P28 DTA mice (Fig.1i); In conclusion, our study tendon cells, beyond their conventional role in joint movement, are key players for the postnatal growth and expansion of TMJ condyle (Fig.1j).
Taylor, EL;Weaver, SR;Lorang, IM;Arnold, KM;Bradley, EW;Marron Fernandez de Velasco, E;Wickman, K;Westendorf, JJ;
PMID: 35314385 | DOI: 10.1016/j.bone.2022.116391
Long bones are formed and repaired through the process of endochondral ossification. Activation of G protein-coupled receptor (GPCR) signaling pathways is crucial for skeletal development and long bone growth. G protein-gated inwardly-rectifying K+ (GIRK) channel genes are key functional components and effectors of GPCR signaling pathways in excitable cells of the heart and brain, but their roles in non-excitable cells that directly contribute to endochondral bone formation have not been studied. In this study, we analyzed skeletal phenotypes of Girk2-/-, Girk3-/- and Girk2/3-/- mice. Bones from 12-week-old Girk2-/- mice were normal in length, but femurs and tibiae from Girk3-/- and Girk2/3-/- mice were longer than age-matched controls at 12-weeks-old. Epiphyseal chondrocytes from 5-day-old Girk3-/- mice expressed higher levels of genes involved in collagen chain trimerization and collagen fibril assembly, lower levels of genes encoding VEGF receptors, and produced larger micromasses than wildtype chondrocytes in vitro. Girk3-/- chondrocytes were also more responsive to the kappa opioid receptor (KOR) ligand dynorphin, as evidenced by greater pCREB expression, greater cAMP and GAG production, and upregulation of Col2a1 and Sox9 transcripts. Imaging studies showed that Kdr (Vegfr2) and endomucin expression was dramatically reduced in bones from young Girk3-/- mice, supporting a role for delayed vasculogenesis and extended postnatal endochondral bone growth. Together these data indicate that GIRK3 controls several processes involved in bone lengthening.
The Journal of clinical investigation
Ovejero, D;Michel, Z;Cataisson, C;Saikali, A;Galisteo, R;Yuspa, SH;Collins, MT;de Castro, LF;
PMID: 36943390 | DOI: 10.1172/JCI159330
Cutaneous Skeletal Hypophosphatemia Syndrome (CSHS) is a mosaic RASopathy characterized by the association of dysplastic skeletal lesions, congenital skin nevi of epidermal and/or melanocytic origin, and fibroblast growth factor-23 (FGF23)-mediated hypophosphatemia. The primary physiological source of circulating FGF23 is bone cells. However, several reports have suggested skin lesions as the source of excess FGF23 in CSHS. Consequently, without convincing evidence of efficacy, many patients with CSHS have undergone painful removal of cutaneous lesions in an effort to normalize blood phosphate levels.This study aims to elucidate whether the source of FGF23 excess in CSHS is RAS mutation-bearing bone or skin lesions. Towards this end, we analyzed the expression and activity of Fgf23 in two mouse models expressing similar HRAS/Hras activating mutations in a mosaic-like fashion in either bone or epidermal tissue. We found that HRAS hyperactivity in bone, not skin, caused excess of bioactive intact FGF23, hypophosphatemia and osteomalacia.Our findings support RAS-mutated dysplastic bone as the primary source of physiologically active FGF23 excess in patients with CSHS. This evidence informs the care of patients with CSHS, arguing against the practice of nevi removal to decrease circulating, physiologically active FGF23.
Watson, CJ;Tang, WJ;Rojas, MF;Fiedler, IAK;Morfin Montes de Oca, E;Cronrath, AR;Callies, LK;Swearer, AA;Ahmed, AR;Sethuraman, V;Addish, S;Farr, GH;Gómez, AE;Rai, J;Monstad-Rios, AT;Gardiner, EM;Karasik, D;Maves, L;Busse, B;Hsu, YH;Kwon, RY;
PMID: 36346812 | DOI: 10.1371/journal.pgen.1010496
Bone and muscle are coupled through developmental, mechanical, paracrine, and autocrine signals. Genetic variants at the CPED1-WNT16 locus are dually associated with bone- and muscle-related traits. While Wnt16 is necessary for bone mass and strength, this fails to explain pleiotropy at this locus. Here, we show wnt16 is required for spine and muscle morphogenesis in zebrafish. In embryos, wnt16 is expressed in dermomyotome and developing notochord, and contributes to larval myotome morphology and notochord elongation. Later, wnt16 is expressed at the ventral midline of the notochord sheath, and contributes to spine mineralization and osteoblast recruitment. Morphological changes in wnt16 mutant larvae are mirrored in adults, indicating that wnt16 impacts bone and muscle morphology throughout the lifespan. Finally, we show that wnt16 is a gene of major effect on lean mass at the CPED1-WNT16 locus. Our findings indicate that Wnt16 is secreted in structures adjacent to developing bone (notochord) and muscle (dermomyotome) where it affects the morphogenesis of each tissue, thereby rendering wnt16 expression into dual effects on bone and muscle morphology. This work expands our understanding of wnt16 in musculoskeletal development and supports the potential for variants to act through WNT16 to influence bone and muscle via parallel morphogenetic processes.
Ruscitto A, Morel MM, Shawber CJ, Reeve G, Lecholop MK, Bonthius D, Yao H, Embree MC
PMID: 32030828 | DOI: 10.1096/fj.201902287R
Temporomandibular joint osteoarthritis (TMJ OA) leads to permanent cartilage destruction, jaw dysfunction, and compromises the quality of life. However, the pathological mechanisms governing TMJ OA are poorly understood. Unlike appendicular articular cartilage, the TMJ has two distinct functions as the synovial joint of the craniofacial complex and also as the site for endochondral jaw bone growth. The established dogma of endochondral bone ossification is that hypertrophic chondrocytes undergo apoptosis, while invading vasculature with osteoprogenitors replace cartilage with bone. However, contemporary murine genetic studies support the direct differentiation of chondrocytes into osteoblasts and osteocytes in the TMJ. Here we sought to characterize putative vasculature and cartilage to bone transdifferentiation using healthy and diseased TMJ tissues from miniature pigs and humans. During endochondral ossification, the presence of fully formed vasculature expressing CD31+ endothelial cells and ?-SMA+ vascular smooth muscle cells were detected within all cellular zones in growing miniature pigs. Arterial, endothelial, venous, angiogenic, and mural cell markers were significantly upregulated in miniature pig TMJ tissues relative to donor matched knee meniscus fibrocartilage tissue. Upon surgically creating TMJ OA in miniature pigs, we discovered increased vasculature and putative chondrocyte to osteoblast transformation dually marked by COL2 and BSP or RUNX2 within the vascular bundles. Pathological human TMJ tissues also exhibited increased vasculature, while isolated diseased human TMJ cells exhibited marked increased in vasculature markers relative to control 293T cells. Our study provides evidence to suggest that the TMJ in higher order species are in fact vascularized. There have been no reports of cartilage to bone transdifferentiation or vasculature in human-relevant TMJ OA large animal models or in human TMJ tissues and cells. Therefore, these findings may potentially alter the clinical management of TMJ OA by defining new drugs that target angiogenesis or block the cartilage to bone transformation
Proceedings of the National Academy of Sciences of the United States of America
Aldawood, ZA;Mancinelli, L;Geng, X;Yeh, SA;Di Carlo, R;C Leite, T;Gustafson, J;Wilk, K;Yozgatian, J;Garakani, S;Bassir, SH;Cunningham, ML;Lin, CP;Intini, G;
PMID: 37040407 | DOI: 10.1073/pnas.2120826120
In newborn humans, and up to approximately 2 y of age, calvarial bone defects can naturally regenerate. This remarkable regeneration potential is also found in newborn mice and is absent in adult mice. Since previous studies showed that the mouse calvarial sutures are reservoirs of calvarial skeletal stem cells (cSSCs), which are the cells responsible for calvarial bone regeneration, here we hypothesized that the regenerative potential of the newborn mouse calvaria is due to a significant amount of cSSCs present in the newborn expanding sutures. Thus, we tested whether such regenerative potential can be reverse engineered in adult mice by artificially inducing an increase of the cSSCs resident within the adult calvarial sutures. First, we analyzed the cellular composition of the calvarial sutures in newborn and in older mice, up to 14-mo-old mice, showing that the sutures of the younger mice are enriched in cSSCs. Then, we demonstrated that a controlled mechanical expansion of the functionally closed sagittal sutures of adult mice induces a significant increase of the cSSCs. Finally, we showed that if a calvarial critical size bone defect is created simultaneously to the mechanical expansion of the sagittal suture, it fully regenerates without the need for additional therapeutic aids. Using a genetic blockade system, we further demonstrate that this endogenous regeneration is mediated by the canonical Wnt signaling. This study shows that controlled mechanical forces can harness the cSSCs and induce calvarial bone regeneration. Similar harnessing strategies may be used to develop novel and more effective bone regeneration autotherapies.
Andreasen, CM;El-Masri, BM;MacDonald, B;Laursen, KS;Nielsen, MH;Thomsen, JS;Delaisse, JM;Andersen, TL;
PMID: 37150243 | DOI: 10.1016/j.bone.2023.116787
Although failure to establish a vascular network has been associated with many skeletal disorders, little is known about what drives development of vasculature in the intracortical bone compartments. Here, we show that intracortical bone resorption events are coordinated with development of the vasculature. We investigated the prevalence of vascular structures at different remodeling stages as well as their 3D organization using proximal femoral cortical bone from 5 girls and 6 boys (aged 6-15 years). A 2D analysis revealed that non-quiescent intracortical pores contained more vascular structures than quiescent pores (p < 0.0001). Type 2 pores, i.e., remodeling of existing pores, had a higher density of vascular structures than type 1 pores, i.e., de novo created pores (p < 0.05). Furthermore, pores at the eroded-formative remodeling stage, had more vascular structures than pores at any other remodeling stage (p < 0.05). A 3D reconstruction of an intracortical remodeling event showed that osteoclasts in the advancing tip of the cutting cone as well as preosteoclasts in the lumen expressed vascular endothelial growth factor-A (VEGFA), while VEGFA-receptors 1 and 2 mainly were expressed in endothelial cells in the adjacent vasculature. Consequently, we propose that the progression of the vascular network in intracortical remodeling events is driven by osteoclasts expressing VEGFA. Moreover, the vasculature is continuously reconfigured according to the demands of the remodeling events at the surrounding bone surfaces.
Development (Cambridge, England)
Hoyle, DJ;Dranow, DB;Schilling, TF;
PMID: 34919126 | DOI: 10.1242/dev.199826
Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.
bioRxiv : the preprint server for biology
Collins, JM;Lang, A;Parisi, C;Moharrer, Y;Nijsure, MP;Kim, JHT;Szeto, GL;Qin, L;Gottardi, RL;Dyment, NA;Nowlan, NC;Boerckel, JD;
PMID: 36711590 | DOI: 10.1101/2023.01.20.524918
Endochondral ossification requires coordinated mobilization of osteoblast precursors with blood vessels. During adult bone homeostasis, vessel adjacent osteoblast precursors respond to and are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Previously, we found that deletion of the mechanoresponsive transcriptional regulators, YAP and TAZ, from Osterix-expressing osteoblast precursors and their progeny caused perinatal lethality. Here, we show that embryonic YAP/TAZ signaling couples vessel-associated osteoblast precursor mobilization to angiogenesis in developing long bones. Osterix-conditional YAP/TAZ deletion impaired endochondral ossification in the primary ossification center but not intramembranous osteogenesis in the bone collar. Single-cell RNA sequencing revealed YAP/TAZ regulation of the angiogenic chemokine, Cxcl12, which was expressed uniquely in vessel-associated osteoblast precursors. YAP/TAZ signaling spatially coupled osteoblast precursors to blood vessels and regulated vascular morphogenesis and vessel barrier function. Further, YAP/TAZ signaling regulated vascular loop morphogenesis at the chondro-osseous junction to control hypertrophic growth plate remodeling. In human cells, mesenchymal stromal cell co-culture promoted 3D vascular network formation, which was impaired by stromal cell YAP/TAZ depletion, but rescued by recombinant CXCL12 treatment. Lastly, YAP and TAZ mediated mechanotransduction for load-induced osteogenesis in embryonic bone.