Collier, AD;Yasmin, N;Karatayev, O;Abdulai, AR;Yu, B;Khalizova, N;Fam, M;Leibowitz, SF;
PMID: 36702854 | DOI: 10.1038/s41598-023-28369-7
Embryonic ethanol exposure in zebrafish and rats, while stimulating hypothalamic hypocretin/orexin (Hcrt) neurons along with alcohol consumption and related behaviors, increases the chemokine receptor Cxcr4 that promotes neuronal migration and may mediate ethanol's effects on neuronal development. Here we performed a more detailed anatomical analysis in zebrafish of ethanol's effects on the Cxcl12a/Cxcr4b system throughout the entire brain as it relates to Hcrt neurons developing within the anterior hypothalamus (AH) where they are normally located. We found that ethanol increased these Hcrt neurons only in the anterior part of the AH and induced ectopic Hcrt neurons further anterior in the preoptic area, and these effects along with ethanol-induced behaviors were completely blocked by a Cxcr4 antagonist. Analysis of cxcl12a transcripts and internalized Cxcr4b receptors throughout the brain showed they both exhibited natural posterior-to-anterior concentration gradients, with levels lowest in the posterior AH and highest in the anterior telencephalon. While stimulating their density in all areas and maintaining these gradients, ethanol increased chemokine expression only in the more anterior and ectopic Hcrt neurons, effects blocked by the Cxcr4 antagonist. These findings demonstrate how increased chemokine expression acting along natural gradients mediates ethanol-induced anterior migration of ectopic Hcrt neurons and behavioral disturbances.
The Journal of comparative neurology
Inoue, K;Ford, CL;Horie, K;Young, LJ;
PMID: 35763609 | DOI: 10.1002/cne.25382
Oxytocin regulates social behavior via direct modulation of neurons, regulation of neural network activity, and interaction with other neurotransmitter systems. The behavioral effects of oxytocin signaling are determined by the species-specific distribution of brain oxytocin receptors. The socially monogamous prairie vole has been a useful model organism for elucidating the role of oxytocin in social behaviors, including pair bonding, response to social loss, and consoling. However, there has been no comprehensive mapping of oxytocin receptor-expressing cells throughout the prairie vole brain. Here, we employed a highly sensitive in situ hybridization, RNAscope, to construct an exhaustive, brain-wide map of oxytocin receptor mRNA-expressing cells. We found that oxytocin receptor mRNA expression was widespread and diffused throughout the brain, with specific areas displaying a particularly robust expression. Comparing receptor binding with mRNA revealed that regions of the hippocampus and substantia nigra contained oxytocin receptor protein but lacked mRNA, indicating that oxytocin receptors can be transported to distal neuronal processes, consistent with presynaptic oxytocin receptor functions. In the nucleus accumbens, a region involved in oxytocin-dependent social bonding, oxytocin receptor mRNA expression was detected in both the D1 and D2 dopamine receptor-expressing subtypes of cells. Furthermore, natural genetic polymorphisms robustly influenced oxytocin receptor expression in both D1 and D2 receptor cell types in the nucleus accumbens. Collectively, our findings further elucidate the extent to which oxytocin signaling is capable of influencing brain-wide neural activity, responses to social stimuli, and social behavior. KEY POINTS: Oxytocin receptor mRNA is diffusely expressed throughout the brain, with strong expression concentrated in certain areas involved in social behavior. Oxytocin receptor mRNA expression and protein localization are misaligned in some areas, indicating that the receptor protein may be transported to distal processes. In the nucleus accumbens, oxytocin receptors are expressed on cells expressing both D1 and D2 dopamine receptor subtypes, and the majority of variation in oxytocin receptor expression between animals is attributable to polymorphisms in the oxytocin receptor gene.
Morel, C;Martinez Sanchez, I;Cherifi, Y;Chartrel, N;Diaz Heijtz, R;
PMID: 36870672 | DOI: 10.1016/j.neuropharm.2023.109479
The gut microbiota is increasingly recognized as a key environmental factor that shapes host development and physiology, including neural circuits formation and function. Concurrently, there has been growing concern that early-life antibiotic exposure may alter brain developmental trajectories, increasing the risk for neurodevelopmental disorders such as autism spectrum disorder (ASD). Here, we assessed whether perturbation of the maternal gut microbiota in mice during a narrow critical perinatal window (last week of pregnancy and first three postnatal days), induced by exposure to a commonly used broad-spectrum oral antibiotic (ampicillin), influences offspring neurobehavioral outcomes relevant to ASD. Our results demonstrate that neonatal offspring from antibiotic-treated dams display an altered pattern of ultrasonic communication, which was more pronounced in males. Moreover, juvenile male, but not female, offspring from antibiotic-treated dams showed reduced social motivation and social interaction, as well as context-dependent anxiety-like behavior. However, no changes were observed in locomotor or exploratory activity. This behavioral phenotype of exposed juvenile males was associated with reduced gene expression of the oxytocin receptor (OXTR) and several tight-junction proteins in the prefrontal cortex, a key region involved in the regulation of social and emotional behavior, as well as a mild inflammatory response in the colon. Further, juvenile offspring from exposed dams also showed distinct alterations in several gut bacterial species, including, Lactobacillus murinus, and Parabacteroides goldsteinii. Overall, this study highlights the importance of the maternal microbiome in early-life, and how its perturbation by a widely used antibiotic could contribute to atypical social and emotional development of offspring in a sex-dependent manner.