Olde Heuvel, F;Ouali Alami, N;Aousji, O;Pogatzki-Zahn, E;Zahn, PK;Wilhelm, H;Deshpande, D;Khatamsaz, E;Catanese, A;Woelfle, S;Schön, M;Jain, S;Grabrucker, S;Ludolph, AC;Verpelli, C;Michaelis, J;Boeckers, TM;Roselli, F;
PMID: 37316943 | DOI: 10.1186/s13229-023-00552-7
Autism Spectrum Disorders (ASD) patients experience disturbed nociception in the form of either hyposensitivity to pain or allodynia. A substantial amount of processing of somatosensory and nociceptive stimulus takes place in the dorsal spinal cord. However, many of these circuits are not very well understood in the context of nociceptive processing in ASD.We have used a Shank2-/- mouse model, which displays a set of phenotypes reminiscent of ASD, and performed behavioural and microscopic analysis to investigate the role of dorsal horn circuitry in nociceptive processing of ASD.We determined that Shank2-/- mice display increased sensitivity to formalin pain and thermal preference, but a sensory specific mechanical allodynia. We demonstrate that high levels of Shank2 expression identifies a subpopulation of neurons in murine and human dorsal spinal cord, composed mainly by glycinergic interneurons and that loss of Shank2 causes the decrease in NMDAR in excitatory synapses on these inhibitory interneurons. In fact, in the subacute phase of the formalin test, glycinergic interneurons are strongly activated in wild type (WT) mice but not in Shank2-/- mice. Consequently, nociception projection neurons in laminae I are activated in larger numbers in Shank2-/- mice.Our investigation is limited to male mice, in agreement with the higher representation of ASD in males; therefore, caution should be applied to extrapolate the findings to females. Furthermore, ASD is characterized by extensive genetic diversity and therefore the findings related to Shank2 mutant mice may not necessarily apply to patients with different gene mutations. Since nociceptive phenotypes in ASD range between hyper- and hypo-sensitivity, diverse mutations may affect the circuit in opposite ways.Our findings prove that Shank2 expression identifies a new subset of inhibitory interneurons involved in reducing the transmission of nociceptive stimuli and whose unchecked activation is associated with pain hypersensitivity. We provide evidence that dysfunction in spinal cord pain processing may contribute to the nociceptive phenotypes in ASD.
Merdrignac, C;Clément, AE;Montfort, J;Murat, F;Bobe, J;
PMID: 36078102 | DOI: 10.3390/cells11172694
The AUTS2 gene plays major roles during brain development and is associated with various neuropathologies including autism. Data in non-mammalian species are scarce, and the aim of our study was to provide a comprehensive analysis of auts2 evolution in teleost fish, which are widely used for in vivo functional analysis and biomedical purposes. Comparative genomics in 78 species showed that auts2a and auts2b originate from the teleost-specific whole genome duplication (TGD). auts2a, which is highly similar to human AUTS2, was almost systematically retained following TGD. In contrast, auts2b, which encodes for a shorter protein similar to a short human AUTS2 isoform, was lost more frequently and independently during evolution. RNA-seq analysis in 10 species revealed a highly conserved profile with predominant expression of both genes in the embryo, brain, and gonads. Based on protein length, conserved domains, and expression profiles, we speculate that the long human isoform functions were retained by auts2a, while the short isoform functions were retained by auts2a and/or auts2b, depending on the lineage/species. auts2a showed a burst in expression during medaka brain formation, where it was expressed in areas of the brain associated with neurodevelopmental disorders. Together, our data suggest a strong conservation of auts2 functions in vertebrates despite different evolutionary scenarios in teleosts.
Cerebellum (London, England)
Shen, LP;Li, W;Pei, LZ;Yin, J;Xie, ST;Li, HZ;Yan, C;Wang, JJ;Zhang, Q;Zhang, XY;Zhu, JN;
PMID: 36040660 | DOI: 10.1007/s12311-022-01466-5
The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.
Kim, S;Oh, H;Choi, SH;Yoo, YE;Noh, YW;Cho, Y;Im, GH;Lee, C;Oh, Y;Yang, E;Kim, G;Chung, WS;Kim, H;Kang, H;Bae, Y;Kim, SG;Kim, E;
PMID: 36130507 | DOI: 10.1016/j.celrep.2022.111398
Myelin transcription factor 1 like (Myt1l), a zinc-finger transcription factor, promotes neuronal differentiation and is implicated in autism spectrum disorder (ASD) and intellectual disability. However, it remains unclear whether Myt1l promotes neuronal differentiation in vivo and its deficiency in mice leads to disease-related phenotypes. Here, we report that Myt1l-heterozygous mutant (Myt1l-HT) mice display postnatal age-differential ASD-related phenotypes: newborn Myt1l-HT mice, with strong Myt1l expression, show ASD-like transcriptomic changes involving decreased synaptic gene expression and prefrontal excitatory synaptic transmission and altered righting reflex. Juvenile Myt1l-HT mice, with markedly decreased Myt1l expression, display reverse ASD-like transcriptomes, increased prefrontal excitatory transmission, and largely normal behaviors. Adult Myt1l-HT mice show ASD-like transcriptomes involving astrocytic and microglial gene upregulation, increased prefrontal inhibitory transmission, and behavioral deficits. Therefore, Myt1l haploinsufficiency leads to ASD-related phenotypes in newborn mice, which are temporarily normalized in juveniles but re-appear in adults, pointing to continuing phenotypic changes long after a marked decrease of Myt1l expression in juveniles.