Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (30)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (7) Apply TBD filter
  • TH (2) Apply TH filter
  • Npy (2) Apply Npy filter
  • PDGFRA (2) Apply PDGFRA filter
  • TRPA1 (2) Apply TRPA1 filter
  • Olig2 (2) Apply Olig2 filter
  • Trpv1 (2) Apply Trpv1 filter
  • vGlut2 (2) Apply vGlut2 filter
  • Bcan (2) Apply Bcan filter
  • Piezo2 (1) Apply Piezo2 filter
  • MEG3 (1) Apply MEG3 filter
  • TRPM5 (1) Apply TRPM5 filter
  • Gal (1) Apply Gal filter
  • Wnt7b (1) Apply Wnt7b filter
  • Gnat3 (1) Apply Gnat3 filter
  • CCKAR (1) Apply CCKAR filter
  • Fgfr3 (1) Apply Fgfr3 filter
  • Rbfox3 (1) Apply Rbfox3 filter
  • CALCA (1) Apply CALCA filter
  • CCK (1) Apply CCK filter
  • Enpp1 (1) Apply Enpp1 filter
  • Rspo3 (1) Apply Rspo3 filter
  • FOXP2 (1) Apply FOXP2 filter
  • CHRNA7 (1) Apply CHRNA7 filter
  • CHRM5 (1) Apply CHRM5 filter
  • CSF1R (1) Apply CSF1R filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL10 (1) Apply CXCL10 filter
  • CXCL13 (1) Apply CXCL13 filter
  • Mc4r (1) Apply Mc4r filter
  • DRD2 (1) Apply DRD2 filter
  • Prkcd (1) Apply Prkcd filter
  • Gata3 (1) Apply Gata3 filter
  • Thy1 (1) Apply Thy1 filter
  • GFAP (1) Apply GFAP filter
  • GLP1R (1) Apply GLP1R filter
  • PAX2 (1) Apply PAX2 filter
  • PVALB (1) Apply PVALB filter
  • SLC32A1 (1) Apply SLC32A1 filter
  • Cspg4 (1) Apply Cspg4 filter
  • IL1B (1) Apply IL1B filter
  • IL34 (1) Apply IL34 filter
  • ITGAM (1) Apply ITGAM filter
  • TAC1 (1) Apply TAC1 filter
  • CNTNAP2 (1) Apply CNTNAP2 filter
  • GFRA1 (1) Apply GFRA1 filter
  • UCN3 (1) Apply UCN3 filter
  • Mest (1) Apply Mest filter
  • Reln (1) Apply Reln filter
  • P2ry1 (1) Apply P2ry1 filter

Product

  • (-) Remove RNAscope HiPlex v2 assay filter RNAscope HiPlex v2 assay (30)

Research area

  • Neuroscience (15) Apply Neuroscience filter
  • Cancer (5) Apply Cancer filter
  • Development (4) Apply Development filter
  • Metabolism (2) Apply Metabolism filter
  • Other: Methods (2) Apply Other: Methods filter
  • Aging (1) Apply Aging filter
  • behavioral (1) Apply behavioral filter
  • Cellular Senescence (1) Apply Cellular Senescence filter
  • CGT (1) Apply CGT filter
  • Glaucoma (1) Apply Glaucoma filter
  • Immunity (1) Apply Immunity filter
  • Inflammation (1) Apply Inflammation filter
  • Neurodevelopment (1) Apply Neurodevelopment filter
  • Other: lung fibrosis (1) Apply Other: lung fibrosis filter
  • Other: Mouth (1) Apply Other: Mouth filter
  • Other: Ophthalmology (1) Apply Other: Ophthalmology filter
  • Other: Skin (1) Apply Other: Skin filter
  • Other: Transcriptomics (1) Apply Other: Transcriptomics filter
  • Pain (1) Apply Pain filter
  • Physiology (1) Apply Physiology filter
  • Single Cell Sequencing (1) Apply Single Cell Sequencing filter
  • Skin Disease (1) Apply Skin Disease filter
  • Sympathic Nervous System (1) Apply Sympathic Nervous System filter
  • Taste receptor cells (1) Apply Taste receptor cells filter
  • Transcriptomics (1) Apply Transcriptomics filter
  • Transplantation (1) Apply Transplantation filter
  • Tumor microenvironment (1) Apply Tumor microenvironment filter

Category

  • Publications (30) Apply Publications filter
Renewal of oligodendrocyte lineage reverses dysmyelination and CNS neurodegeneration through corrected N-acetylaspartate metabolism

Progress in neurobiology

2023 May 04

Lotun, A;Li, D;Xu, H;Su, Q;Tuncer, S;Sanmiguel, J;Mooney, M;Baer, CE;Ulbrich, R;Eyles, SJ;Strittmatter, L;Hayward, LJ;Gessler, DJ;Gao, G;
PMID: 37149081 | DOI: 10.1016/j.pneurobio.2023.102460

Myelinating oligodendrocytes are essential for neuronal communication and homeostasis of the central nervous system (CNS). One of the most abundant molecules in the mammalian CNS is N-acetylaspartate (NAA), which is catabolized into L-aspartate and acetate by the enzyme aspartoacylase (ASPA) in oligodendrocytes. The resulting acetate moiety is thought to contribute to myelin lipid synthesis. In addition, affected NAA metabolism has been implicated in several neurological disorders, including leukodystrophies and demyelinating diseases such as multiple sclerosis. Genetic disruption of ASPA function causes Canavan disease, which is hallmarked by increased NAA levels, myelin and neuronal loss, large vacuole formation in the CNS, and early death in childhood. Although NAA's direct role in the CNS is inconclusive, in peripheral adipose tissue, NAA-derived acetate has been found to modify histones, a mechanism known to be involved in epigenetic regulation of cell differentiation. We hypothesize that a lack of cellular differentiation in the brain contributes to the disruption of myelination and neurodegeneration in diseases with altered NAA metabolism, such as Canavan disease. Our study demonstrates that loss of functional Aspa in mice disrupts myelination and shifts the transcriptional expression of neuronal and oligodendrocyte markers towards less differentiated stages in a spatiotemporal manner. Upon re-expression of ASPA, these oligodendrocyte and neuronal lineage markers are either improved or normalized, suggesting that NAA breakdown by Aspa plays an essential role in the maturation of neurons and oligodendrocytes. Also, this effect of ASPA re-expression is blunted in old mice, potentially due to limited ability of neuronal, rather than oligodendrocyte, recovery.
Neurons in the dorsomedial hypothalamus promote, prolong, and deepen torpor in the mouse

The Journal of neuroscience : the official journal of the Society for Neuroscience

2022 Apr 19

Ambler, M;Hitrec, T;Wilson, A;Cerri, M;Pickering, A;
PMID: 35440490 | DOI: 10.1523/JNEUROSCI.2102-21.2022

Torpor is a naturally occurring, hypometabolic, hypothermic state engaged by a wide range of animals in response to imbalance between the supply and demand for nutrients. Recent work has identified some of the key neuronal populations involved in daily torpor induction in mice, in particular projections from the preoptic area of the hypothalamus (POA) to the dorsomedial hypothalamus (DMH). The DMH plays a role in thermoregulation, control of energy expenditure, and circadian rhythms, making it well positioned to contribute to the expression of torpor. We used activity dependent genetic TRAPing techniques to target DMH neurons that were active during natural torpor bouts in female mice. Chemogenetic reactivation of torpor-TRAPed DMH neurons in calorie-restricted mice promoted torpor, resulting in longer and deeper torpor bouts. Chemogenetic inhibition of torpor-TRAPed DMH neurons did not block torpor entry, suggesting a modulatory role for the DMH in the control of torpor. This work adds to the evidence that the POA and the DMH form part of a circuit within the mouse hypothalamus that controls entry into daily torpor.SIGNIFICANCEDaily heterotherms such as mice employ torpor to cope with environments in which the supply of metabolic fuel is not sufficient for the maintenance of normothermia. Daily torpor involves reductions in body temperature, as well as active suppression of heart rate and metabolism. How the central nervous system controls this profound deviation from normal homeostasis is not known, but a projection from the preoptic area to the dorsomedial hypothalamus has recently been implicated. We demonstrate that the dorsomedial hypothalamus contains neurons that are active during torpor. Activity in these neurons promotes torpor entry and maintenance, but their activation alone does not appear to be sufficient for torpor entry.
An analgesic pathway from parvocellular oxytocin neurons to the periaqueductal gray in rats

Nature communications

2023 Feb 24

Iwasaki, M;Lefevre, A;Althammer, F;Clauss Creusot, E;Łąpieś, O;Petitjean, H;Hilfiger, L;Kerspern, D;Melchior, M;Küppers, S;Krabichler, Q;Patwell, R;Kania, A;Gruber, T;Kirchner, MK;Wimmer, M;Fröhlich, H;Dötsch, L;Schimmer, J;Herpertz, SC;Ditzen, B;Schaaf, CP;Schönig, K;Bartsch, D;Gugula, A;Trenk, A;Blasiak, A;Stern, JE;Darbon, P;Grinevich, V;Charlet, A;
PMID: 36828816 | DOI: 10.1038/s41467-023-36641-7

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.
Medial amygdala ERα expression influences monogamous behaviour of male prairie voles in the field

Proceedings. Biological sciences

2021 Aug 11

Lambert, CT;Lichter, JB;Perry, AN;Castillo, SA;Keane, B;Cushing, BS;Solomon, NG;
PMID: 34344176 | DOI: 10.1098/rspb.2021.0318

Formation of long-term pair-bonds is a complex process, involving multiple neural circuits and is context- and experience-dependent. While laboratory studies using prairie voles have identified the involvement of several neural mechanisms, efforts to translate these findings into predictable field outcomes have been inconsistent at best. Here we test the hypothesis that inhibition of oestrogen receptor alpha (ERα) in the medial amygdala of male prairie voles would significantly increase the expression of social monogamy in the field. Prairie vole populations of equal sex ratio were established in outdoor enclosures with males bred for high levels of ERα expression and low levels of prosocial behaviour associated with social monogamy. Medial amygdala ERα expression was knocked down in half the males per population. Knockdown males displayed a greater degree of social monogamy in five of the eight behavioural indices assessed. This study demonstrates the robust nature of ERα in playing a critical role in the expression of male social monogamy in a field setting.
Type II taste cells participate in mucosal immune surveillance

PLoS biology

2023 Jan 01

Qin, Y;Palayyan, SR;Zheng, X;Tian, S;Margolskee, RF;Sukumaran, SK;
PMID: 36634039 | DOI: 10.1371/journal.pbio.3001647

The oral microbiome is second only to its intestinal counterpart in diversity and abundance, but its effects on taste cells remains largely unexplored. Using single-cell RNASeq, we found that mouse taste cells, in particular, sweet and umami receptor cells that express taste 1 receptor member 3 (Tas1r3), have a gene expression signature reminiscent of Microfold (M) cells, a central player in immune surveillance in the mucosa-associated lymphoid tissue (MALT) such as those in the Peyer's patch and tonsils. Administration of tumor necrosis factor ligand superfamily member 11 (TNFSF11; also known as RANKL), a growth factor required for differentiation of M cells, dramatically increased M cell proliferation and marker gene expression in the taste papillae and in cultured taste organoids from wild-type (WT) mice. Taste papillae and organoids from knockout mice lacking Spib (SpibKO), a RANKL-regulated transcription factor required for M cell development and regeneration on the other hand, failed to respond to RANKL. Taste papillae from SpibKO mice also showed reduced expression of NF-κB signaling pathway components and proinflammatory cytokines and attracted fewer immune cells. However, lipopolysaccharide-induced expression of cytokines was strongly up-regulated in SpibKO mice compared to their WT counterparts. Like M cells, taste cells from WT but not SpibKO mice readily took up fluorescently labeled microbeads, a proxy for microbial transcytosis. The proportion of taste cell subtypes are unaltered in SpibKO mice; however, they displayed increased attraction to sweet and umami taste stimuli. We propose that taste cells are involved in immune surveillance and may tune their taste responses to microbial signaling and infection.
Single-Molecule Fluorescence In Situ Hybridization for Spatial Detection of mRNAs in Sections of Mammalian Testes

Methods in molecular biology (Clifton, N.J.)

2023 May 30

Diaz, VD;Hermann, BP;
PMID: 37249865 | DOI: 10.1007/978-1-0716-3139-3_3

Single-molecule fluorescence in situ hybridization (smFISH) enables the detection and localization of individual mRNAs in tissue sections with single-molecule resolution while preserving spatial context, and thus, is a useful tool for examining gene expression in biological systems. In particular, the growing reliance on single-cell RNA sequencing (scRNA-seq) to explore cellular heterogeneity has reinvigorated this approach as a validation tool to spatially re-map mRNA expression patterns described in isolated cells to their parent tissue. While use of antibody-based methods, such as indirect immunofluorescence (IIF), remain popular as validation strategies, smFISH often affords superior specificity and maintains congruency with scRNA-seq. Here, we present a detailed protocol that combines multiplexed smFISH using the RNAscope approach with IIF to co-visualize mRNAs and proteins within sections of mouse testes. We provide step-by-step guidelines from testis preparation through visualization that enables mapping of combinations of up to four mRNA/protein targets in frozen sections on the RNAscope platform.
Cell-type profiling of the sympathetic nervous system using spatial transcriptomics and spatial mapping of mRNA

Developmental dynamics : an official publication of the American Association of Anatomists

2023 Feb 24

Kasemeier-Kulesa, JC;Morrison, JA;McKinney, S;Li, H;Gogol, M;Hall, K;Chen, S;Wang, Y;Perera, A;McLennan, R;Kulesa, PM;
PMID: 36840366 | DOI: 10.1002/dvdy.577

The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture.To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections.Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.
Lipid metabolism in dopaminergic neurons influences light entrainment

Journal of neurochemistry

2023 Feb 23

Fernandez, RF;Wilson, ES;Diaz, V;Martínez-Gardeazabal, J;Foguth, R;Cannon, JR;Jackson, SN;Hermann, BP;Eells, JB;Ellis, JM;
PMID: 36815399 | DOI: 10.1111/jnc.15793

Dietary lipids, particularly omega-3 polyunsaturated fatty acids, are speculated to impact behaviors linked to the dopaminergic system, such as movement and control of circadian rhythms. However, the ability to draw a direct link between dopaminergic omega-3 fatty acid metabolism and behavioral outcomes has been limited to the use of diet-based approaches, which are confounded by systemic effects. Here, neuronal lipid metabolism was targeted in a diet-independent manner by manipulation of long-chain acyl-CoA synthetase 6 (ACSL6) expression. ACSL6 performs the initial reaction for cellular fatty acid metabolism and prefers the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). The loss of Acsl6 in mice (Acsl6-/- ) depletes neuronal membranes of DHA content and results in phenotypes linked to dopaminergic control, such as hyperlocomotion, impaired short-term spatial memory, and imbalances in dopamine neurochemistry. To investigate the role of dopaminergic ACSL6 on these outcomes, a dopaminergic neuron-specific ACSL6 knockout mouse was generated (Acsl6DA-/- ). Acsl6DA-/- mice demonstrated hyperlocomotion and imbalances in striatal dopamine neurochemistry. Circadian rhythms of both the Acsl6-/- and the Acsl6DA-/- mice were similar to control mice under basal conditions. However, upon light entrainment, a mimetic of jet lag, both the complete knockout of ACSL6 and the dopaminergic-neuron-specific loss of ACSL6 resulted in a longer recovery to entrainment compared to control mice. In conclusion, these data demonstrate that ACSL6 in dopaminergic neurons alters dopamine metabolism and regulation of light entrainment suggesting that DHA metabolism mediated by ACSL6 plays a role in dopamine neuron biology.
The Use of Single Cell RNA-seq and Spatial Transcriptomics in Understanding the Pathogenesis and Treatment of Skin Diseases

JID Innovations

2023 Mar 01

Houser, A;Kazmi, A;Nair, A;Ji, A;
| DOI: 10.1016/j.xjidi.2023.100198

The development of multi-omic profiling tools has rapidly expanded in recent years, along with their use in profiling skin tissues in various contexts, including dermatologic diseases. Among these tools, single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) have emerged as widely adopted and powerful assays for elucidating key cellular components and their spatial arrangement within skin disease. Here, we review recent biological insights gained from the use of scRNA-seq and ST, and the advantages of combining both, for profiling skin disease, including aberrant wound healing, inflammatory skin diseases, and cancer. We discuss the role of scRNA-seq and ST for improving skin disease treatments and moving towards the goal of achieving precision medicine in dermatology, whereby patients can be optimally matched to treatments that maximize therapeutic response.
Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies

GeroScience

2023 Apr 20

Cherry, C;Andorko, JI;Krishnan, K;Mejías, JC;Nguyen, HH;Stivers, KB;Gray-Gaillard, EF;Ruta, A;Han, J;Hamada, N;Hamada, M;Sturmlechner, I;Trewartha, S;Michel, JH;Davenport Huyer, L;Wolf, MT;Tam, AJ;Peña, AN;Keerthivasan, S;Le Saux, CJ;Fertig, EJ;Baker, DJ;Housseau, F;van Deursen, JM;Pardoll, DM;Elisseeff, JH;
PMID: 37079217 | DOI: 10.1007/s11357-023-00785-7

Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells' (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo-derived senescence signature (SenSig) using a foreign body response-driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and "cartilage-like" fibroblasts as senescent and defined cell type-specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34-CSF1R-TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.
Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy

Science immunology

2022 Apr 01

Hoch, T;Schulz, D;Eling, N;Gómez, JM;Levesque, MP;Bodenmiller, B;
PMID: 35363540 | DOI: 10.1126/sciimmunol.abk1692

Intratumoral immune cells are crucial for tumor control and antitumor responses during immunotherapy. Immune cell trafficking into tumors is mediated by binding of specific immune cell receptors to chemokines, a class of secreted chemotactic cytokines. To broadly characterize chemokine expression and function in melanoma, we used multiplexed mass cytometry-based imaging of protein markers and RNA transcripts to analyze the chemokine landscape and immune infiltration in metastatic melanoma samples. Tumors that lacked immune infiltration were devoid of most of the profiled chemokines and exhibited low levels of antigen presentation and markers of inflammation. Infiltrated tumors were characterized by expression of multiple chemokines. CXCL9 and CXCL10 were often localized in patches associated with dysfunctional T cells expressing the B lymphocyte chemoattractant CXCL13. In tumors with B cells but no B cell follicles, T cells were the sole source of CXCL13, suggesting that T cells play a role in B cell recruitment and potentially in B cell follicle formation. B cell patches and follicles were also enriched with TCF7+ naïve-like T cells, a cell type that is predictive of response to immune checkpoint blockade. Our data highlight the strength of targeted RNA and protein codetection to analyze tumor immune microenvironments based on chemokine expression and suggest that the formation of tertiary lymphoid structures may be accompanied by naïve and naïve-like T cell recruitment, which may contribute to antitumor activity.
Specific regulation of mechanical nociception by Gβ5 involves GABA-B receptors

JCI insight

2023 May 23

Pandey, M;Zhang, JH;Adikaram, PR;Kittock, CM;Lue, N;Awe, AM;Degner, KN;Jacob, N;Staples, JN;Thomas, R;Kohnen, AB;Ganesan, S;Kabat, J;Chen, CK;Simonds, WF;
PMID: 37219953 | DOI: 10.1172/jci.insight.134685

Mechanical, thermal, and chemical pain sensation is conveyed by primary nociceptors, a subset of sensory afferent neurons. The intracellular regulation of the primary nociceptive signal is an area of active study. We report here the discovery of a Gβ5-dependent regulatory pathway within mechanical nociceptors that restrains anti-nociceptive input from metabotropic GABA-B receptors. In mice with conditional knockout (cKO) of Gnb5 targeted to peripheral sensory neurons, we demonstrate the impairment of mechanical, thermal, and chemical nociception. We further report the specific loss of mechanical nociception in Rgs7-Cre+/-; Gnb5fl/fl mice but not in Rgs9-Cre+/-; Gnb5fl/fl mice, suggesting that Gβ5 might specifically regulate mechanical pain in Rgs7+ cells. Additionally, Gβ5-dependent and Rgs7-associated mechanical nociception is dependent upon GABA-B receptor signaling since both were abolished by treatment with a GABA-B receptor antagonist and since cKO of Gβ5 from sensory cells or from Rgs7+ cells potentiated the analgesic effects of GABA-B agonists. Following activation by the Mrgprd agonist β-alanine, enhanced sensitivity to inhibition by baclofen was observed in primary cultures of Rgs7+ sensory neurons harvested from Rgs7-Cre+/-; Gnb5fl/fl mice. Taken together, these results suggest that the targeted inhibition of Gβ5 function in Rgs7+ sensory neurons might provide specific relief for mechanical allodynia, including that contributing to chronic neuropathic pain, without reliance on exogenous opioids.

Pages

  • 1
  • 2
  • 3
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?